Solution of Linear State – Space Equations
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The solution of  
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 can be decomposed into two parts:

(a) The zero-input solution, i.e. solution of
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(b) The zero-state solution, i.e. 
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In other words, x(t) which solves
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is given by x(t) = xZI(t) + xzs(t)

To see this
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= A(t)xZI(t) +A(t)xZS(t) + B(t)u(t)


=A(t)(xZI(t) + xZS(t)) + B(t)u(t)


=A(t)x(t)+B(t)u(t)

Also x(to) = xZI(to) + xZS(to)



=xo + 0 = xo

This proves the solution x(t) can be decomposed into two parts.

We will therefore try to find each solution separately.

We begin with the zero-input solution.

We want to solve the differential equation
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The differential equation has a unique solution for every initial state xo. Since there are infinitely many possible initial states, then the differential equation has infinitely many solutions. 

Theorem : 

The set of solutions of 
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 is an n-dimensional vector space, where n is the number of state-variable.

Review of Linear Algebra

Set:
It is a collection of elements

EXAMPLES:


R
:
Set of Real numbers

     C
:
Set of all complex numbers

     Z   
:
Set of all integers

Also
:
Set of {0,1}


:
Set of all polynomials of degree <5


:
Set of all 2 × 2 real matrices

Field
:
A field consists of a set, denoted by 
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, of elements called scalars and two operations called addition or + and multiplication or . with the operations defined according to the following axioms:

(a) To every pair of elements α1 and α2 the sum α1 + α2  and the product α1  . α2 exist in 
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.

(b) Addition and multiplication are associative 
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(c) Addition and multiplication are commutative
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(d)    Multiplication is distributive over addition
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(e)
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 element in 
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, denoted by 0 such that 
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(f)
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 element in 
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, denoted by 1 such that 
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(g)
To each α in  
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 there corresponds an element - α in 
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,  such that
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(Additive Inverse)

(f) To each α in  
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  there corresponds an element α
       in 
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 such that
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(Multiplicative Inverse)

Examples

· The set R of all real numbers with the usual addition and multiplication is a field.

· The set C of all complex numbers with the usual addition and multiplication is a field.

Notice that R is a sub field of C

· The set of rational functions with real coefficients with the usual addition and multiplication of polynomials is a field.

The set {0,1} of binary numbers is a field if the rules of addition and multiplication are appropriately defined i.e. if

	+
	0     1
	
	.
	0     1

	0

1
	0   1

1     0
	
	0

1
	0     0

0     1


The following sets of familiar numbers do not form fields:

· The set of all positive (negative) real numbers.  Since the additive inverse is not in the set.

· The set of all integers.  Since the multiplicative inverse is not integer.

_1011378708.unknown

_1011522132.unknown

_1011523737.unknown

_1011524815.unknown

_1011543238.unknown

_1011524433.unknown

_1011523290.unknown

_1011522741.unknown

_1011523117.unknown

_1011521483.unknown

_1011522000.unknown

_1011379156.unknown

_1011520626.unknown

_1011377073.unknown

_1011377496.unknown

_1011377039.unknown

_1011376440.unknown

_1011376621.unknown

