State-Variable Description

Motivation

Consider a system with the transfer function
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Clearly the system is unstable 

To stabilize it, we can precede HF(s) with a compensator
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The overall transfer function:
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This is nice outcome, but unfortunately this technique will not work: After a while the system will burn or saturate. 

To see why, let us first set up an analog computer simulation of the cascade system
We can write the equations


[image: image4.wmf]v

x

x

x

x

ú

û

ù

ê

ë

é

-

+

ú

û

ù

ê

ë

é

ú

û

ù

ê

ë

é

-

=

ú

ú

û

ù

ê

ê

ë

é

·

·

1

2

1

1

0

1

2

1

2

1



[image: image5.wmf]ú

û

ù

ê

ë

é

=

ú

û

ù

ê

ë

é

20

10

2

1

)

0

(

)

0

(

x

x

x

x



[image: image6.wmf][

]

ú

û

ù

ê

ë

é

=

2

1

1

0

x

x

y


There are general methods of solving such so-called state-space equation but it will suffice to proceed as follows:

The first equation is 
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Which yields


x1(t) = e-t x10 – 2e-t *v

*denotes convolution

The second equation
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has a solution


y(t) = x2(t) = et x20 + 
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 (et-e-t) x10 + e-t *v
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Therefore the overall transfer function, which has to be calculated with zero initial condition is 1/(s+1) as expected.

Note: However, that unless the initial conditions can always be kept zero, y(.) will grow without bond.

So the input output description of a system is applicable only when the system is initially relaxed

State-Variable

Definition: The state of a system at time to is the amount of information at to that, together with u[to,
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), determine uniquely the behavior of the system for all t 
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Usually x denotes state, u input, y output

Example
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where 
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So if y(to) is known, the output after t ( to can be uniquely determined.  Hence, y(to) regarded on the state at time to
A very broad class of systems can be modeled by 
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together with
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where
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We have seen an important special case, where
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and
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Fact (Existence & uniqueness)

Under some mild conditions on f(., ., .), the value of x(.) at to qualifies as the “state” of the system at time to, i.e. knowledge of x(to). And u(t) for t ( to gives a unique {y(t) : t ( to} & {x(t): t ( to}

Which solves the equations: 


 
[image: image21.wmf])

,

,

(

t

u

x

f

x

-

-

-

·

-

=




[image: image22.wmf])

,

,

(

t

u

x

g

y

-

-

-

-

=



[image: image37.wmf]u

t

D

x

t

c

y

u

t

B

x

t

A

x

)

(

)

(

)

(

)

(

+

=

+

=

·

For the special cases:
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A sufficient condition for the existence of a unique solutions x(t), y(t) for t ( to given x(to) and u(t), t ( to is that A(.) be a continues function.

We will make this assumption throughout the course.
Note:  The above condition is always satisfied when

A(.) is a constant matrix.
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Consider the model

It defines an input-output mapping H where

 y = Hu,
and u and y take values over (-
[image: image23.wmf]¥

,
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).
Question:  Is H a linear I/O map?

As a mapping, H will be linear whenever xo= 0.

We need to prove this:

Let  u1(.) and u2(.) be two inputs define on (-
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,
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).
Let  x1(.) and x2(.) be the corresponding solutions

And y1(.) and y2(.) be the corresponding outputs
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Therefore 
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And
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We must show that if 
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 is applied as an  input, then the resulting output will be 
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Claim: If 
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 is applied at the input, then the unique state solution is 
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This is easy to show.

Hence                   satisfies the diff. Equation with

We must also show if satisfies the initial condition:

This proves the claim.

The rest is simple:
One of the most important implications of the notion of a “system state” is that knowledge of that state at a given time, say to, eliminates the need to know anything about the systems prior to time to.

Therefore, for a system described by the model

If one is only interested in the output and state for t > to, one only needs to know   and    for t ( to.

Accordingly the state at time to and the input for t ( to can be uniquely mapped to the state trajectory x for t ( to and output y for t  to, i.e.
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