 Stability of Linear Systems

We will look at stability from two viewpoints:

1. Stability in terms of Input-Output Description (external)

2. Stability in terms of State-Space Description (internal)

The two are related!
We look at stability of input/output descriptions first.  Time-varying and time invariant systems are considered.

Recall that for a linear, causal system which is assumed to be relaxed at to = 0, the input-output relation is given by 
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(u and y maybe vectors)

Intuitively, stability of the input-output system means that if the input is “well-behaved” the output will also be “well-behaved”.  Also, “small” changes in the input, should not lead to “very large” changes in the output.

What do we mean by “well-behaved”?

How small is “a small” change?  How large is “very-large”?

To give a precise definition for stability we must quantity the signal size.
We need a measure for the size of signals at the input and output.

Many measures for signal size are available.  Most commonly, signal norms are used for that purpose.

We shall use the L∞ norm as a measure for signal size.  This is a simple norm to understand:

Let u(t) be a time-signal defined on (0, 
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Sup – means the supermum, which is the least-upper bound.

If |u(t)| has a maximum, then 

[image: image6.wmf])

(

)

(

max

sup

0

0

t

u

t

u

t

t

³

³

=


The set of all signals with finite L∞-norm is called L∞.

We are now ready to give a precise definition of Bound-Input Bounded-Output (BIBO) stability.  This definition applied to nonlinear systems as well.

Let the input and output be related by y = Hu where 

H is the input-output map. 

Definition (BIBO Stability)

A system with input-outut map H is said to be BIBO stable if

(1) For every u Є L∞, y = Hu also belongs to L∞.

(2) There exists a constant k >0 such that
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We now restrict ourselves to causal linear systems which are relaxed at to=o; i.e. systems described by:
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Note that G(t,τ) could be a matrix, so
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Theorem:
A linear system described by y(t) = 
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is BIBO stable if and only if there exists k<
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Proof:  We will prove this theorem for the SISO case.  The proof for the MIMO case is similar.
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If u Є L∞, then , |u(t)| ≤ ║u║∞ and
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cannot be bounded by a fixed k for all t. i.e., 



there exists tM such that
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We will show that in this case, the system is not BIBO stable.  

Given M>0.  Let tM be such that 
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Choose uM(t) = sgn G(tM,τ).  For this input, the output yM(t)

Now  
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Hence ║yM║∞ > M.   It follows that ║yM║∞ > M ║uM║∞ 
Equivalently, 
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