Power Spectrum of Digitally Modulated Signals

EE571 Dr. Samir Alghadhban

Reading Material

• Proakis section 3.4

PSD of Digitally Modulated Signals with Memory

• Let v(t) be the bandpass modulated signal, its lowpass equivalent signal is :

$$v_l(t) = \sum_{n = -\infty}^{\infty} s_l(t - nT; I_n)$$

- Where I_n is the information sequence
- The autocorrelation of $v_i(t)$ is

$$\begin{split} R_{v_l}(t+\tau,t) &= E\Big[v_l(t+\tau)v_l^*(t)\Big] \\ &= \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} E\Big[s_l(t+\tau-nT;I_n)s_l^*(t-mT;I_m)\Big] \end{split}$$

PSD of DM Signals with Memory

- $v_i(t)$ is cyclostationary since changing t to t+T does not change the mean and autocorrelation function.
- To determine its power spectral density, we need to average over one period T.
- Let k = n m

$$\overline{R}_{v_l}(\tau) = \frac{1}{T} \sum_{k=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \int_{0}^{T} E\left[s_l(t+\tau-mT-kT;I_{m+k})s_l^*(t-mT;I_m)\right] dt$$

$$\begin{split} & \text{Change } \textit{u=t-mT} \\ &= \frac{1}{T} \sum_{k=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \int_{-mT}^{-(m-1)T} E\Big[s_l(u+\tau-kT;I_k) s_l^*(u;I_0) \Big] du \\ &= \frac{1}{T} \sum_{k=-\infty}^{\infty} \int_{-\infty}^{\infty} E\Big[s_l(u+\tau-kT;I_k) s_l^*(u;I_0) \Big] du \end{split}$$

PSD of DM Signals with Memory

Let
$$g_k(\tau) = \int_{-\infty}^{\infty} E[s_l(t+\tau;I_k)s_l^*(t;I_0)]dt$$

Then

$$\overline{R}_{v_l}(\tau) = \frac{1}{T} \sum_{k=-\infty}^{\infty} g_k(\tau - kT)$$

And the PSD of $v_i(t)$ is

$$S_{v_l}(f) = \frac{1}{T} F \left[\sum_{k} g_k(\tau - kT) \right]$$
$$= \frac{1}{T} \sum_{k=-\infty}^{\infty} G_k(f) e^{-j2\pi kfT}$$

PSD of DM Signals with Memory

Where $G_k(f)$ is the Fourier transform of $g_k(\tau)$

$$\begin{split} G_k(f) &= F \Bigg[\int\limits_{-\infty}^{\infty} E \Big[s_l(t+\tau;I_k) s_l^*(t;I_0) \Big] dt \Bigg] \\ &= \int\limits_{-\infty}^{\infty} \int\limits_{-\infty}^{\infty} E \Big[s_l(t+\tau;I_k) s_l^*(t;I_0) \Big] e^{-j2\pi f \tau} dt d\tau \\ &= E \Bigg[\int\limits_{-\infty}^{\infty} \int\limits_{-\infty}^{\infty} s_l(t+\tau;I_k) e^{-j2\pi f(t+\tau)} s_l^*(t;I_0) e^{j2\pi f t} dt d\tau \Bigg] \\ &= E \Big[S_l(f;I_k) S_l^*(f;I_0) \Big] \end{split}$$

PSD of DM Signals with Memory

- Note that $G_0(f) = E[|S_l(f;I_0)|^2]$ is real and $G_{-k}(f) = G_k^*(f)$
- Define $G_k'(f) = G_k(f) G_0(f)$ Thus $G_{-k}'(f) = G_k'^*(f)$. . . $G_0'(f) = 0$
- Then we can write

$$S_{v_l}(f) = \frac{1}{T} \sum_{k=-\infty}^{\infty} (G_k(f) - G_0(f)) e^{-j2\pi k f T} + \frac{1}{T} \sum_{k=-\infty}^{\infty} G_0(f) e^{-j2\pi k f T}$$

- Since $\sum_{k=-\infty}^{\infty} e^{-j2\pi kfT} = \frac{1}{T} \sum_{k=-\infty}^{\infty} \delta \left(f \frac{k}{T} \right)$
- · We can write

$$S_{v_l}(f) = \frac{1}{T} \sum_{k=-\infty}^{\infty} \left(G_k(f) - G_0(f) \right) e^{-j2\pi k f T} + \frac{1}{T^2} \sum_{k=-\infty}^{\infty} G_0(f) \delta \left(f - \frac{k}{T} \right)$$

PSD of DM Signals with Memory

$$\begin{split} S_{v_l}(f) &= \frac{2}{T} \mathrm{Re} \bigg[\sum_{k=-\infty}^{\infty} \Big(G_k(f) - G_0(f) \Big) e^{-j2\pi k f T} \, \bigg] + \frac{1}{T^2} \sum_{k=-\infty}^{\infty} G_0(f) \delta \bigg(f - \frac{k}{T} \bigg) \\ &= S_{v_l}^c(f) + S_{v_l}^d(f) \end{split}$$

PSD of Linearly Modulated Signals

 In linearly modulated signals, such as ASK, PSK and QAM, the lowpass equivalent of the modulated signal is

$$v_l(t) = \sum_{n = -\infty}^{\infty} I_n g(t - nT)$$

- Thus in this case, $s_l(t, I_n) = I_n g(t)$
- And $G_k(f) = E\Big[S_l(f;I_k)S_l^*(f;I_0)\Big]$ $= E\Big[I_kI_0^*\big|G(f)\big|^2\Big]$ $= R_I(k)\big|G(f)\big|^2$

Autocorrelation of the information sequence

FT of g(t)

PSD of Linearly Modulated Signals

• In this case, the PSD will be:

$$S_{v_{I}}(f) = \frac{1}{T} |G(f)|^{2} \sum_{k=-\infty}^{\infty} R_{I}(k) e^{-j2\pi k f T}$$
$$= \frac{1}{T} |G(f)|^{2} S_{I}(f)$$

Where

PSD of the discrete time random process $\{I_n\}$

Precoding of information sequence

Spectral Shaping

Precoding

To control the PSD, we can employ a precoder of the form

$$J_n = I_n + \alpha I_{n-1}$$

In General, we can introduce a memory of length L

$$J_n = \sum_{k=0}^{L} \alpha_k I_{n-k}$$

• The generated waveform will be:

$$v_l(t) = \sum_{k=-\infty}^{\infty} J_k g(t - kT)$$

· And the resulting PSD will be

$$S_{v_l}(f) = \frac{1}{T} |G(f)|^2 \left| \sum_{k=0}^{L} \alpha_k e^{-j2\pi k f T} \right|^2 S_I(f)$$

Example 3.4 – 1 (Proakis)

- For a binary communication system, I_n=±1, with equal probability and I_n's are independent.
- Using a rectangular pulse $g(t) = \Pi\left(\frac{t}{T}\right)$ to generate the signal

$$v(t) = \sum_{k=-\infty}^{\infty} I_k g(t - kT)$$

• The PSD will be in this form

$$S_{\nu}(f) = \frac{1}{T} \left| T \operatorname{sinc}(Tf) \right|^2 S_I(f)$$

• To determine $S_{i}(f)$, we need to find $R_{i}(k)=E[I_{n+k}I_{n}^{*}]$, Since the sequence $\{I_{n}\}$ is independent:

$$R_{I}(k) = \begin{cases} E[|I|^{2}] = 1, & k = 0 \\ E[I_{n+k}]E[I_{n}^{*}] = 0, & k \neq 0 \end{cases}$$

Example 3.4 - 1 (Proakis)

- Thus, $S_I(f) = \sum_{k=-\infty}^{\infty} R_I(k) e^{-j2\pi k f T} = 1$
- And $S_{\nu}(f) = T \operatorname{sinc}^{2}(Tf)$
- A precoding of the form $J_n = I_n + \alpha I_{n-1}$ where α is real, would result in a PSD of the form

$$S_{v}(f) = T\operatorname{sinc}^{2}(Tf)(1 + \alpha^{2} + 2\alpha\cos(2\pi fT))$$

Numerical Estimation of PSD

The Periodogram Method

Let $S_{xx}(f)$ be the PSD of a stochastic process X(t), the an estimate of the PSD could be calculated as:

$$\tilde{S}_{XX}(f) = \frac{1}{NT_s} |X_N(f)|^2$$

Where T_s is the sampling period and N is the number of observed samples.

Also $X_N(f)$ is the discrete Fourier transform of the observed data sequence

 $X_N(f) = T_s \sum_{n=0}^{N-1} X(n) e^{-j2\pi f n T_s}$

The Periodogram Method

Matlab function periodogram

http://www.mathworks.com/help/signal/ref/periodogram.html#btt5c35-2

Practice Problems

• Proakis 3.15, 3.16, 3.19, 3.24, 3.25, 3.26