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PSD of Digitally Modulated Signals
with Memory

* Let v(t) be the bandpass modulated signal, its
lowpass equivalent signal is :

V()= i s,(t—nT;1))

n=—oo

* Where |, is the information sequence

* The autocorrelation of v/(t) is

R, (t+T.)=E[v,(t+7)v, (1) ]

= i Z E[sl(t+r—nT;In)s,*(t—mT;Im)]

PSD of DM Signals with Memory

* v(t)is cyclostationary since changing t to t+T does not change
the mean and autocorrelation function.

* To determine its power spectral density, we need to average
over one period T.
* Letk=n-m

oo o T
I_Qvl(r):%kz > [ E[s,t+1—mT —kT:1,,)s; (¢t~ mT:1,) Jdi
=—c° 0

—(m-1)T

Changeu=f'mT:%zi I E[s,(u+1'—kT;Ik)Sz*(MZIo)]du
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PSD of DM Signals with Memory

oo

let g ()= [ E[s,(t+7:0,)s(t:1,) ]t

Then |-
R,(®=2 2 8=k

k=—o0

And the PSD of v,(t) is
5, (f)= %F[ng—kn}

= Y G

k=—co

PSD of DM Signals with Memory

Where G,(f) is the Fourier transform of g,(t)

Gk(f)zFU E[s,(t+1’;lk)s,*(t;lo)]dt}

o

‘I f E[s,t+7:1)s,(t:1,) |e > didt

—00 —o0

E[J J s,(t+1;1)e 7?5 (8 1,)e” ™ dtd‘r}

E[S,(f:1)S, (f:1,)]
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PSD of DM Signals with Memory

Note that G,(f)=E[|S,(f:1,) | is real and G_.(/)=G.(f)

Define G/(f)=G.(f)~G,(f) Thus C+(I=CGI ()

Then we can write Gy (f)=0

1 - i2 ki 1 c —j2rkfT
S, (H== Y (G.(H=Gy(f))e ™" o Y G, (f)e ™

k=—oco k=—co

Since N —.mrkﬂ‘:l N _ﬁj
e 58(r-5

k=—co f=—oo

We can write

i e
S, (f) =% > (GH=Gy(N)e ™™+ 3, G0<f>6(f—§)
k=—oo

k=—oo

PSD of DM Signals with Memory

5,(9)= %R{ > (G- Go(f))e””"”}r% S 6o 15|

k=—oo k=—oo

=S (NH+S(H)
Continuous Discrete
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PSD of Linearly Modulated Signals

* Inlinearly modulated signals, such as ASK, PSK and QAM, the
lowpass equivalent of the modulated signal is

v0=Y, 1,8(-nT)

n=—oo

* Thusinthiscase, ¢ (r.1 y=1 g(1)

* And Gk(f):E[Sl(f;lk)sl*(f;lo)]
= E[ 1L1|G(/) ]

 =RMIGUY

Autocorrelation of the
information sequence FT of g(t)

PSD of Linearly Modulated Signals

* In this case, the PSD will be:

1 ) & .
S, (N=ZGUI 2 R (ke ™"
k=—oo
1 2
=G/ S,(f)
T FT of the modulation
* Where . pulse
S, (f)= 2 R, (k)e—jznka .
k=—oo Pulse Shaping
PSD of the discrete .
time random process SpeCtraI Shaplng
{1} Precoding of
information
sequence
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Precoding

To control the PSD, we can employ a precoder of the form

J, =1 +oal
In General, we can introduce a memory of length L
L
Jn = Zakln—k
k=0
The generated waveform will be:

v()=" J.gt—kT)

k=—oo

And the resulting PSD will be

S, (f)——IG(f)I ‘Zak | S,(f)

Example 3.4 — 1 (Proakis)

For a binary communication system, | =1, with equal probability

and | s are independent.
Using a rectangular pulse g(r)= H(T) to generate the signal

v(t) = 2 1,g(t—kT)
k=—co
The PSD will be in this form

S, = {Tsine(7)f* 5,/

To determine S/(f), we need to find R (k)=E[l,.,,/,"] , Since the
sequence {l,} is independent:
E|1" =1 k=0

Rl(k):
E(1.]E[I,]=0 k=0

n+k

3/25/14



Example 3.4 — 1 (Proakis)

. Thus' S](f): z R[(k)e—j27r]{fT :1

* And S,(f)=Tsinc*(Tf)

e Aprecoding of the form J,=1,+al,_, whereaisreal,
would result in a PSD of the form

S,(f)=Tsinc’ (Tf)(1+ o” + 20 cos(27 fT))

Numerical Estimation of PSD

The Periodogram Method
Let S,,(f) be the PSD of a stochastic process X(t), the an estimate
of the PSD could be calculated as:

~ 1 2

S =—|X

w(f) NTJ\ ()

Where T, is the sampling period and N is the number of
observed samples.

Also X(f) is the discrete Fourier transform of the observed data

N-1
sequence XN (f) — TSZX(n)e—ﬂn:fnT‘\
n=0
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The Periodogram Method

Matlab function periodogram

http://www.mathworks.com/help/signal/ref/

periodogram.html#btt5¢c35-2
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FIGURE 34-1
Power spectral density of binary CPFSK.
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Spectral density for four-level CPFSK . Spectral density for four-level CPFSK
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Power spectral density of quaternary CPFSK.
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FIGURE 3.4-3
Power spectral density of octal CPFSK.
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Power spectral density of MSK and OQPSK. [Source: Gronemeyer and McBride (1976);
© IEEE.]

Fractional out-of-band signal power (dB)

0 FIGURE 3.4-5
~100 Fractional out-of-band power (normalized
—300 © IEEE.]
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dB FIGURE 3.4-6

Power spectral density for binary CPM with & = £ and
different pulse shapes. [Source: Aulin et al. (1981);

© IEEE.]

Power spectrum (W/Hz)
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Power spectral density for M = 4 CPM with 3RC and
different modulation indices. [Source: Aulin et al. (1981);
© IEEE.]
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Practice Problems

* Proakis 3.15, 3.16, 3.19, 3.24, 3.25, 3.26
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