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1.1 Set Definitions
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Aa∈ Aa∉

Set   A element

Tabular method Rule method

{2,4,6,8,10, }A = ⋯ {   is even}A a N a= ∈

the set of natural numbersN =

the set of integersZ = the set of rational numbersQ =

the set of real numbersR =
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1.1 Set Definitions

3

Def: Set   is countable, if there is an onto function  : .A f N A→

{2,4,6} is countable.A =

, ,  &   are countable.N Z Q

( the set of irrational numbers) is uncountable.R Q− =

Def: Set   is finite, if  has a finite number of elements.A A

not finite = infinite

not countable = uncountable

finite    countable⇒

 is uncountable.R

1.1 Set Definitions
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Def: (proper subset)

Def: Set   is a subset of set , if    .A B a A a B∈ ⇒ ∈

A B⊂

 = null setφ

 &  are disjoint.A B A Bφ∩ = ⇔

(mutually exclusive)
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1.1 Set Definitions
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A B⊂ A E φ∩ =

Ex 1.1-1: {1,3,5,7}, {1,2,3, }, {0.5 8.5}A B C c= = = < ≤⋯

{0.0}, {2,4,6,8,10,12,14}, { 5.0 12.0}D E F f= = = − < ≤

tabularly specified  -- rule-specified  --

finite -- infinite --

countable -- uncountable --

D φ≠

Universal set = S

rolling a die    {1,2,3,4,5,6}S⇒ =

toss two coins    { , , , }S HH HT TH TT⇒ =

1.2 Set Operations

6

Venn Diagram
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1.2 Set Operations
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  &         A B B A A B⊂ ⊂ ⇔ =

{ :   &  }A B x x A x B A B− = ∈ ∉ = ∩

B S B= − complement

1 2
1

N

N n
n

A A A A
=

∪ ∪ ∪ = ∪⋯
1 2

1

N

N n
n

A A A A
=

∩ ∩ ∩ = ∩⋯

S φ= A A=

A B B A∪ = ∪ A B B A∩ = ∩

( ) ( )A B C A B C A B C∪ ∪ = ∪ ∪ = ∪ ∪

commutative

associative

1.2 Set Operations
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( )A B A B∪ = ∩

( ) ( )A B C A B C A B C∩ ∩ = ∩ ∩ = ∩ ∩

( ) ( ) ( )A B C A B A C∩ ∪ = ∩ ∪ ∩

( ) ( ) ( )A B C A B A C∪ ∩ = ∪ ∩ ∪

distributive

( )A B B A∩ = ∪

De Morgan's Laws

Duality ∪ ↔ ∩

Sφ ↔
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1.3 Probability Introduced Through Sets and 

Relative Frequency
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Definition of Probability - set theory and axioms

- relative frequency

Experiment

- sample space  S

- event

- probability  P

( -algebra  )σ Ω

Rolling a die.

{1,2,3,4,5,6}S =

{1,3,5}A = {2,4,6}B =

{1,2,3,4}C =

( ) ( ) 0.5P A P B= =

2
( )

3
P C =

( , , )  -- probability spaceS PΩ

1.3 Probability Introduced Through Sets and 

Relative Frequency
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Sample space  S

Rolling a die  ⇒ {1,2,3,4,5,6}S =

set of all possible outcomes in the experiment

Toss a coin  ⇒

Toss 2 coins  ⇒

{ , }S H T=

{ , , , }S HH HT TH TT=

Choose a number in [0,1]  ⇒ { : 0 1}S s s= ≤ ≤

Choose a number in   N ⇒ {1,2,3, }S N= = ⋯

discrete   &  continuous

finite  &  infinite

countable  &  uncountable
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1.3 Probability Introduced Through Sets and 

Relative Frequency
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Event

-algebra    the set of all eventsσ Ω =

= a subset of S

Toss a coin  ⇒

Toss 2 coins  ⇒

{ , }S H T=

{ , , , }S HH HT TH TT=

Choose a number in [0,1]  ⇒ { : 0 1}S s s= ≤ ≤

Choose a number in   N ⇒ {1,2,3, }S N= = ⋯

{ ,{ },{ }, }H T Sφ⇒ Ω =

{ ,{ },{ }, ,{ , , }, }HH HT HH HT TH Sφ⇒ Ω = ⋯

{ : 0 0.5}A a a= < <

{1,3,5, }A = ⋯

1.3 Probability Introduced Through Sets and 

Relative Frequency
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Probability   = a function from  to [0,1]P Ω

Toss a coin  ⇒ { , }S H T=

( ) 0,   ({ }) 0.6,   ({ }) 0.4,   ( ) 1P P H P T P Sφ⇒ = = = =

Probability  Axioms 1. ( ) 0P A ≥

2. ( ) 1P S =

3. ( ) ( ) ( )A B P A B P A P Bφ∩ = ⇒ ∪ = +

11

3'. mutually exclusive  { : 1,2, } ( ) ( )
n n n

nn

A n P A P A

∞ ∞

==

= ⇒ =∑⋯ ∪
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1.3 Probability Introduced Through Sets and 

Relative Frequency
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( ) ( ) ( ) ( )P A B P A P B P A B∪ = + − ∩

Properties:

{1,2,3, }S N= = ⋯

1
({ })

2
n

P n =

3
({ })

4
n

P n =

{ : 0 1}S s s= ≤ ≤ 0 1 ({ : })a b P x a x b b a≤ < ≤ ⇒ < < = −

({0.5}) 0, ((0.3,0.7]) 0.4P P= =

( ) 1 ( )P A P A= −

1.3 Probability Introduced Through Sets and 

Relative Frequency
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Ex 1.3-2:

Probability as a relative frequency

coin toss ({ }) lim H

n

n
P H

n→∞

=

Ex 1.3-3:
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1.4 Joint and Conditional Probability

15

Joint probability   ( )P A B∩

Conditional probability of event , given event A B

( )
( ) 0 ( )

( )

P A B
P B P A B

P B

∩
≠ ⇒ =

Properties:

1. ( ) 0P A B ≥ 2. ( ) 1P S B =

3. ( ) ( ) ( )A C P A C B P A B P C Bφ∩ = ⇒ ∪ = +

4. ( ) 0A B P A Bφ∩ = ⇒ =

( )P B•

1.4 Joint and Conditional Probability
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Ex 1.4-1:

( ) 0.28 28
( )

( ) 0.62 62

P A B
P A B

P B

∩

= = =

28
( )

100
P A B∩ =

:  draw a 47  resistorA Ω :  draw a 5% tolerance resistorB

:  draw a 100  resistorC Ω

44 62 32
( ) , ( ) , ( )

100 100 100
P A P B P C= = =

( ) 0P A C∩ =

( ) 0
( ) 0

( ) 0.32

P A C
P A C

P C

∩

= = =
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1.4 Joint and Conditional Probability
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1 1

( ) ( )
N N

n n

n n

A A S A B A B

= =

= ∩ = ∩ = ∩∪ ∪

11

( ) [ ( )] ( )
N N

n n

nn

P A P A B P A B

==

= ∩ = ∩∑∪mutually exclusive  ⇒

Total probability

1.4 Joint and Conditional Probability
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Bayes' Theorem ( ) ( )( )
( )

( ) ( )

n nn

n

P A B P BP B A
P B A

P A P A

∩

= =

1 1

( ) ( )
( )

( ) ( ) ( ) ( )

n n

n

N N

P A B P B
P B A

P A B P B P A B P B
=

+ +⋯

Ex 1.4-2:

1
=1 before the channelB

2
=0 before the channelB

1
=1 after the channelA

2
=0 after the channelA
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1.4 Joint and Conditional Probability
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1 1
( ) ?P B A =

1 1 1 1 1 2 2
( ) ( ) ( ) ( ) ( ) 0.9 0.6 0.1 0.4 0.58P A P A B P B P A B P B= + = × + × =

1 1 11 1

1 1

1 1

( ) ( )( ) 0.9 0.6 54
( )

( ) ( ) 0.58 58

P A B P BP B A
P B A

P A P A

∩ ×

= = = =

2 1 1 1
( ) ? 1 ( )P B A P B A= = −

1 2
( ) ?P B A =

2 2
( ) ?P B A =

1.5 Independent Events

20

( ) ( ) ( )
 &  independent    ( ) ( )

( ) ( )

P B A P B P A
A B P B A P B

P A P A

∩
⇔ = = =

Def:  Two events  &  are (statistically) independent ifA B

( ) ( ) ( ), ( ) 0, ( ) 0P A B P A P B P A P B∩ = ≠ ≠

( ) ( ) ( )B B S B A A B A B A= ∩ = ∩ ∪ = ∩ ∪ ∩

( ) ( ) ( )P B P B A P B A= ∩ + ∩

 &  independent  A B ⇒ ( ) ( ) ( ) ( ) ( ) ( )

( )[1 ( )] ( ) ( )

P B A P B P B A P B P B P A

P B P A P B P A

∩ = − ∩ = −

= − =

 &  independentA B
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1.5 Independent Events
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1 2 3
Def:  3 events , , &   independent   A A A ⇔

1 2 1 2
( ) ( ) ( )P A A P A P A∩ =( ) 0

i
P A ≠

2 3 2 3
( ) ( ) ( )P A A P A P A∩ =

1 3 1 3
( ) ( ) ( )P A A P A P A∩ =

1 2 3 1 2 3
( ) ( ) ( ) ( )P A A A P A P A P A∩ ∩ =

Ex:
1 2 3

{1,2}, {2,3}, {1,3}A A A= = ={1,2,3,4}S =

( ) ( ) ( ),
i j i j

P A A P A P A i j∩ = ≠

1 2 3 1 2 3
( ) ( ) ( ) ( )P A A A P A P A P A∩ ∩ ≠

1 2 3
, , &   NOT independentA A A

1 2 3
, , &   pairwise independentA A A

1 2 3 1 2 3
Fact:  , , &   independent      & ( )  independentA A A A A A⇒ ∩

1 2 3 1 2 3
Fact:  , , &   independent      & ( )  independentA A A A A A⇒ ∪

1.6 Combined Experiments
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2 independent experiments 1 1 1 2 2 2
( , , )  &  ( , , )S P S PΩ Ω

( , , )S PΩCan define a combined probability space

1 2 1 2 1 1 2 2
{( , ) : , }S S S s s s S s S= × = ∈ ∈

Ex 1.6-1: Ex 1.6-2:

1 2 1 2 1 1 2 2
{ : , }A A A AΩ = Ω ×Ω = × ∈Ω ∈Ω

Ex 1.6-3:

1 2 1 1 2 2 1 1 2 2
( ) ( ) ( ), ,P A A P A P A A A× = ∈Ω ∈Ω

1 2 1 1 2 2 1 1
( ) ( ) ( ) ( )P A S P A P S P A× = =
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1.6 Combined Experiments
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3 independent experiments ( , , ), 1,2,3
i i i

S P iΩ =

( , , )S PΩCan define a combined probability space

1 2 3
S S S S= × ×

1 2 3 1 1 2 2 3 3
( ) ( ) ( ) ( ),

i i
P A A A P A P A P A A× × = ∈Ω

1 2 3
Ω = Ω ×Ω ×Ω

Permutation
( )

!
( 1) ( 1)

!

n

r

n
P n n n r

n r
= − − + =

−

⋯

Combination
( )
!

! !

n n

r r n r

 
=  − 

0

( )
n

n r n r

r

n
x y x y

r

−

=

 
+ =  

 
∑binomial expansion

1.7 Bernoulli Trials
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Basic experiment  - 2 possible outcomes  (   or  )A A

Bernoulli Trials - repeat the basic experiment  timesN

( ) ( ) 1P A p P A p= = −

(Assume that elementary events are independent for every trial.)

({  occurs exactly  times}) (1 )k N k
N

P A k p p
k

−
 

= − 
 

Ex 1.7-1: ( ) 0.4P A = 3N =

2 1
3

(2 hits) 0.4 (1 0.4) 0.288
2

P
 

= − = 
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1.7 Bernoulli Trials
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Ex 1.7-3: ( ) 0.4P A = 120N =

3 0
3

(3 hits) 0.4 (1 0.4) 0.064
3

P
 

= − = 
 

({carrier sunk}) (2 hits) (3 hits) 0.352P P P= + =

50 70
120

(50 hits) 0.4 (1 0.4) ?
50

P
 

= − = 
 

large    N ⇒ De Moivre-Laplace approximation

Poisson approximation

120! ?=


