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Lecture 6
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Dr. Hakan Köroğlu

1

 A filter is a frequency selective circuit whose output
is formed by the components of the input in a certain
frequency band.

 The range of frequencies passed by the filter is called
the passband; the range of frequencies that are
blocked by the filter is called the stopband.

 The type of the filter is identified based on its
frequency response function H(j) = Vo(j)/Vi(j).

Introduction and Some Terminology
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 There are basically four types of filters: low-pass,
high-pass, band-pass and band-stop or band-reject.

Types of Filters
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low-pass high-pass

band-pass band-stop

 Practical filters cannot change their behavior
abruptly between the passband and the stopband.

 Design specifications need to be formulated in terms
of the range of allowable gains in the pass/stop-
bands and the range of the transition interval.

Ideal versus Practial Filters
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 H j

A Practical Low-Pass Filter



3

 Consider the series RL circuit with a sinusoidal input
of frequency .

 For  << R/L, the inductor is like short circuit if
compared to R (i.e. L << R)  vo  vi.

 For  >> R/L, the inductor is like open circuit if
compared to R  (i.e. L >> R) vo  0.

 The phase shift in the output decreases from 0 to
-90 as  increases from 0 to .

 This circuit behaves as a low-pass filter.

Low-Pass Filters: Series RL Circuit
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  0   

 The magnitude and phase of the frequency response
can be obtained and sketched as follows:

Series RL Circuit: Quantitative Analysis
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 The frequency at which the magnitude of the transfer
function is decreased from its maximum value by a
factor of 1/2 is called the cut-off frequency.

 c is also called the half-power frequency.

 The cut-off frequency for the series RL circuit is:

Series RL Circuit: Cut-Off Frequency
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 The magnitude and phase of the frequency response
are obtained as follows:

 The cut-off frequency is given by:

Low-Pass Filters: Series RC Circuit

8
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 The transfer function of a first-order low-pass filter is:

 This transfer function can also be scaled as kH(s).

Low-Pass Filters: General Form
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 H s
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 The time constant is related to the cut-off frequency
as

Frequency and Time Domain Relation
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 Consider the series RC circuit with a sinusoidal input
of frequency .

 For  << 1/(RC), the capacitor is like open circuit if
compared to R (i.e. 1/(C ) >> R)  vo  0.

 For  >> 1/(RC), the capacitor is like short circuit if
compared to R  (i.e. 1/(C ) << R) vo  vi.

 The phase shift in the output decreases from 90 to 0
as  increases from 0 to .

 This circuit behaves as a high-pass filter.

High-Pass Filters: Series RC Circuit
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  0   

 The magnitude and phase of the frequency response
can be obtained and sketched as follows:

Series RC Circuit: Quantitative Analysis
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 Recall that the cut-off frequency is defined by the
following constraint:

 Since the maximum magnitude is still one, we have:

 Hence the cut-off frequency for the series RC circuit
is:

Series RC Circuit: Cut-Off Frequency
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 The magnitude and phase of the frequency response
are obtained as follows:

 The cut-off frequency is given by:

High-Pass Filters: Series RL Circuit
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 The transfer function of a first-order high-pass filter is:

 This transfer function can also be scaled as kH(s).

High-Pass Filters: General Form
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  sH s
s


 c

 Determine the type of the filter:

 Find the cut-off frequency:

 The gain of the filter decreases with decreasing load.

Example: High-Pass Filter with a Load
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 These are filters that pass inputs within a certain
frequency interval, while filtering out signals whose
frequencies lie outside the pass-band.

 Band-stop filters perform a complementary function,
i.e. they filter out (pass) signals whose frequencies
lie within (outside) a certain frequency interval.

 Both filters are characterized by five parameters.
Only two of these can be specified independently.

Band-Pass and Band-Stop Filters
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Q
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Cut-off Frequencies : ,

Center (Resonant) Frequency :

Bandwidth :

Quality Factor :

 Consider the series RLC circuit with a sinusoidal input
of frequency .

 For  = 0, the inductor/capacitor behave as
short/open circuit respectively  vo = 0.

 For  = , the inductor/capacitor behave as
open/short circuit respectively  vo = 0.

 At resonance inductor + capacitor behaves as short
circuit  vo = vi

 This circuit behaves as a band-pass filter.

Band-Pass Filters: Series RLC Circuit
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  0   
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 The magnitude and phase are sketched as follows:

Series RLC Circuit: Quantitative Analysis
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 Recall that at the cut-off frequencies we have:

 This implies that the cut-off frequencies satisfy:

 For + and - sign, we obtain –respectively- the smaller
and the larger cut-off frequencies as:

 One can confirm that:

Series RLC Circuit: Cut-off Frequencies
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 The bandwidth of the series RLC circuit is given by:

 The Quality Factor is the ratio of the center
frequency to the bandwidth:

 The cut-off frequencies can be expressed in terms of
the quality factor and the center frequency as:

Series RLC Circuit: Bandwidth and QF
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 The bandwith is given by:

 The quality factor is obtained as:

 The cut-off frequencies are expressed in the same
way as functions of 0 and Q.

Band-Pass Filters: Parallel RLC Circuit
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Band-Pass Filters: General Form

23

  k sH s
s s

k



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nd

2 2
0

2 -order band-pass filter:

where  is a scaling gain

 The transfer function from vi to vo is given by:

 Ri > 0  increased bandwidth and k < 1.

Band-Pass Filter with a Nonideal Source

24
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 Consider the series RLC circuit with a sinusoidal input
of frequency .

 For  = 0 and  = , inductor + capacitor behaves as
open circuit  vo = vi.

 At resonance, inductor + capacitor behaves as short
circuit  vo = 0.

 This circuit behaves as a band-pass filter. Such filters
are also referred to as band-reject or notch filters.

Band-Stop Filters: Series RLC Circuit
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  0   

 The magnitude and phase are sketched as follows:

Series RLC Circuit: Quantitative Analysis
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Band-Stop Filters: General Form

27

   k s
H s

s s
k

 

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nd

2 2
0

2 2
0

2 -order band-stop filter:

where  is a scaling gain.

Filter parameters are same 

as those of a band-pass filter.

 Design a notch filter to eliminate sinusoidal signals of
frequency within 250150 Hz from an input signal.
Use a series RLC circuit with R = 100 .

 Choose the center frequency as:

 Set the quality factor to:

 The inductance and capacitance must be chosen as:

Example: Notch Filter Synthesis

28
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 Bode plots or diagrams are graphical representations
of the frequency response in logarithmic scale.

 For a given transfer function H(s), a Bode diagram
consists of:

 Amplitude (magnitude) plot of H(j); and

 Phase angle plot of H(j).

with respect to the frequency.

 In order to cover a wider frequency range and obtain
linear sketches, the frequency axis is represented in
logarithmic scale.

 The magnitudes are also displayed in the logarithmic
scale, with a particularly defined unit named decibel.

Bode Plots

29

 The amplitude is plotted in units of decibel (dB):

 Below is a table of actual amplitudes and the
corresponding values in decibels:

The Decibel Scale

30

A log AdB 1020

A AdB A AdB

1.00 0 31.62 30

1.41 3 100.00 40

2.00 6 103 60

3.16 10 104 80

5.62 15 105 100

10.00 20 106 120
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 Consider a transfer function of the form:

where K, z1 and p1 are positive real numbers.

 The frequency response is obtained as:

 The standard form Bode plots is:

Standard Form for Bode Plots
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1

 Consider the standard form:

 The amplitude is obtained as:

 The phase is obtained as:

Amplitude and Phase in Standard Form
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 The amplitude is obtained in the dB scale as:

 Other factors in the numerator/denominator lead to
additional terms to be added/subtracted.

 Straight-line plots are obtained by adding the
contribution of each term, with the approximation:

Amplitude in Decibels

33
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 Above the corner frequency c, the approximation is
a straight line on a log frequency scale:

 The slope is expressed as 20 dB per decade:

Straight-Line Approximations

34
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x x log x y y ax b y            0 0 0 10 0 0 0 0 0: 10 : 1 : 20
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 Complete plot is obtained by adding the contribution
of each term on the graph.

Straight-Line Amplitude Plot

35

K z p  0 1 110, 0.1 rad/sec, 5 rad/sec

 Sketch the straight-line amplitude plot for:

Bode Amplitude Plot: Example

36
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 When the poles and zeros are distant enough from
each other, the amplitude can be refined around c

’s:

More Accurate Amplitude Plots

37

 log /
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2

20 dB per decade
 6 dB per octave

 The phase angle is simply computed as:

 Again, other factors in the numerator/denominator
lead to additional terms to be added/subtracted.

 Straight-line plots are obtained by adding the
contribution of each term, with the approximation:

Computation of the Phase Angle

38
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 The maximum deviation between the approximate
and actual variation of the phase angle is 6.

Approximate versus Actual Phase Angle

39

 Complete plot is obtained by adding the contribution
of each term on the graph.

Straight-Line Phase Angle Plot

40

K z p  0 1 110, 0.1 rad/sec, 5 rad/sec
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 Sketch the straight-line phase angle plot for:

Bode Phase Angle Plot: Example

41
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