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Chapter 10 Sinusoidal Steady-State Power Calculations

In Chapter 9, we calculated the steady state voltages and currents in electric circuits 
driven by sinusoidal sources.

We used phasor method to find the steady state voltages and currents.

In this  chapter, we consider power in such circuits.

The techniques we develop are useful for analyzing many of the electric devices we 
encounter daily, because sinusoidal sources are predominate means of providing electric 
power in our homes, school, and  businesses.

Examples are:
Electric Heater which transform electric energy to thermal energy
Electric Stove and oven
Toasters
Iron  
Electric water heater

And many others

10.1 Instantaneous Power

Consider the following circuit represented by a black box.
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The instantaneous power assuming  passive sign convention 

( Current in the direction of  voltage drop  �  )

(( ) ( ))v tp t i t ( Watts )

If the current is in the direction of  voltage rise  ( �  )  the instantaneous power is:
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o o 0= 0  =6v i

You can see that that the frequency of the Instantaneous
power is twice the frequency of the voltage or current
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10.2 Average and Reactive Power
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v v v i tI It V Vp V t I         

Recall the Instantaneous power p(t) 

cos( si( )   ) n ) (2 2p t tt P P Q   

where

cos(  ) 
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IP V    Average Power (Real Power)

sin(  ) 
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m
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IQ V    Reactive Power

Average Power   P is sometimes called  Real power because it describes the power in 
a circuit that is transformed from electric to non electric ( Example Heat ).

It is easy to see why   P is called Average Power because
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Power for purely resistive Circuits
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The instantaneous power can never be negative.

cos( si( )  ) n ) (2 2p t tt P P Q   

mmV I

2
mmV I

Power can not be extracted from a purely resistive network.
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Power for purely Inductive Circuits
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The instantaneous power p(t) is continuously 
exchanged between the circuit and the source 
driving the circuit. The average power is zero.

When  p(t) is positive, energy is being stored in 
the magnetic field associated with the inductive
element.

When  p(t) is negative, energy is being extracted
from  the magnetic field.

The power associated with purely inductive
circuits is the reactive power  Q. 

The dimension of reactive power Q is the same 
as the average power P. To distinguish them we 
use the unit  VAR (Volt Ampere Reactive) for 
reactive power.

Power for purely Capacitive Circuits
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2
mmV I

2
mmV I



o= 90v i  

The instantaneous power p(t) is continuously 
exchanged between the circuit and the source 
driving the circuit. The average power is zero.

When  p(t) is positive, energy is being stored in 
the electric field associated with the capacitive
element.

When  p(t) is negative, energy is being extracted
from  the electric field.

The power associated with purely capacitive
circuits is the reactive power  Q (VAR).
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The power factor
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V tV

Q

t V         

average average
power po

reactive
pw o erer w

   

Recall the Instantaneous power p(t) 

cos( sin(2 2 ) ) tQtP P    

The angle v  i plays a role in the computation of both average and reactive power

The angle v  i is referred to as the power factor angle

We now define the following :

The power factor cos(  )v i  pf

The reactive factor sin(  )v i  rf

The power factor cos(  )v i  pf

Knowing the power factor pf does not tell you the power factor angle, because 

cos(  ) cos(  )i viv     

To completely describe this angle, we use the descriptive phrases lagging power factor
and leading power factor

Lagging power factor implies that  current lags voltage hence an inductive load

Leading power factor implies that  current leads voltage hence a capacitive load



1/30/2014

6

10.3 The rms Value and Power Calculations

Rcos( )
m v

V t 

Assume that a sinusoidal voltage is applied to the terminals of a resistor as shown 

Suppose we want to determine the average power delivered to the resistor
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T
V dt

R
t

T v
 

 
 
 
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 

 

However since
0

0

2 2
t +1 cos ( )rms
t m

T
V V dt

T v
t  

2

rms

V
P

R
 If the resistor carry sinusoidal current 2

rmsP RI

Recall the Average and Reactive power

cos(  ) 
2

 m
i

m
v

IP V    sin(  ) 
2

 m
i

m
v

IQ V   

Which can be written as 

cos(  ) 
2 2

 m
v i

mV IP    sin(  ) 
2 2

 m
v i

mV IQ   

Therefore the Average and Reactive power can be written in terms of the rms value as 

s rmsrm cos(  ) v iP V I    sin( ) rms vrms iQ V I   

The rms value is also referred to as the effective value eff

Therefore, the average and reactive power can be written in terms of the eff value as: 

f effef cos(  ) v iP V I    f effef sin( ) v iQ V I   
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Example 10.3

10.4 Complex Power

Previously, we found it convenient to introduce sinusoidal voltage and current in terms 
of the complex number, the phasor.

Definition

           

were
               is the complex power
           
        is the  reactive p      

    is the  average powe
er
r

ow

P

Q

j

P

Q S

S

Let the complex power be the complex sum of real power and reactive power 
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Advantages of using complex power

{ }P  S { }Q  S

 We can compute the average and reactive power from the complex power S

 complex power S provide a geometric interpretation 

QjP S

QjP S
S              

( )
Q

reactive power

            
( )

P
average power



cos(  )
tan

sin(  )
vm

vm

m i

m i

IV
IV

 
 


 
 
 
 




2 2=  P QS

n =ta
Q
P

  
 
 

 e j
 S

where

cos(  )
tan

sin(  )
v i

iv







 
 
 






 
  tan tan(  )v i    iv  

power factor angle


The geometric relations for a right triangle mean the four power triangle dimensions 
(|S|, P, Q,  ) can be determined if any two of the four are known.

is called the apparent power

Example 10.4
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10.5 Power Calculations

QjP S cos(  )   sin(  )
2 2

 m m
i i

m m
v v

V VI Ij     

cos(  )   sin(  )
2

 m
v v

m
i i

I jV    
    

(  )

2
 e

j ivmmV I  
 eff

(  )

eff e ivj
V I

 


eff

 

eff e evj j iIV
 

 eff
*
eff

  V I

were
*
eff

I Is the conjugate of the current phasor effI

effV




effI

Circuit

Also
1  
2

 *S VI

Alternate Forms for Complex Power

effV




effI

Circuit

1  
2

 *S VI

eff
*
eff

 S IV

The complex power was defined as

QjP S

Then complex power was calculated to be

OR

However there several useful variations as follows:

First variation

eff
*
eff

( ) Z II

eff
*
eff

 S IV

eff
*
eff

  Z II 2
eff

| |  Z I

2
eff

| |  ( )+ X IjR
effV



Z = +R jX 2 2

eff eff
| |   | |  + X IjR I

               

P
                

Q


2
eff

| |P  R I 2
eff

 I R 2
m

1 
2

I R
2

eff
| |Q  X I 2

eff
 I X 2

m
 1
2

I X
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eff
*
eff

 S IV

Second variation
eff

eff

*
 

 
 
 
 


Z

V
V

*
eff eff 

*Z

V V
eff

2

 
| |


*Z

V

eff
2|

 
|

 
V

R jX
effV



Z = +R jX

                                    

P


e
2

ff 
| |   

jR XV
R X Rj jX

2

2 e2 ff
 | |


R X

R X
Vj

eff e
2 2

2 2 ff
 | | | |

2 2
 

 
V Vj XR

R X R X
                                    

Q


2

2 2 eff
| |P 

R X
VR

e
2

ff
| |

2 2
Q 


VX

R X

 
2 2

2
eff

 V

R

R X

2
m

 
2 2

1 
2

V

R

R X

 
2 2

2
eff

 V

X

R X
2

m
 

2 2

1 
2

V

X

R X

If  Z = R (pure resistive)  X= 0 
2

2 2 eff
| |P 

R X
VR

eff
2|

 
|


V

R
0Q 

If  Z = X (pure reactive)  R= 0 0P  e
2

ff
| |

2 2
Q 


VX

R X
eff

2|
 

|


V
X

Example 10.5 Line
Load

rms because 
the voltage is 
given in terms
of rms.
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975  WP  650  varQ 

Another solution The load average power is the power absorbed by the load resistor  39 

Recall the average Power for purely resistive Circuits

where and   R

f

R

eff ef
IV Are the rms voltage across the resistor and the rms current through

the resistor 
2 
eff

RI

2

R R

m m
V

P
I

 R

feff

R

e f
IV

R R

eeff ff
P IV

975  WP 
650  varQ 

2(39)(5 ) (39)(25)  975   W

| || |R

ff ffe

R

e
P  IV

39
39 26

R

eff j


 L
V V

o36.87
195e j


195R

eff
V 

R R

eeff ff
P IV (195 ))(5 975   W

OR 
R R

eeff ff
P IV ( )R R

eff eff
RI I 2( )R

eff
R I

o

3.18234.39
9 2

36
3 6

e j

j




5

Inductor

eff

Inductor

eff

L

Q IV

I






26
39 26

Inductor

eff

j
j


 L

V V
o

3.1823426
39 6

.36
2

e jj
j




o93
 130e j



130Inductor

eff
V  (5)(1 630 5 VA) 0   RQ  OR 650  var2

eff
 IQ  X

R

eff





V

         

| |  R
eff



V

R

feff

R

e f
IV

From Power for purely resistive Circuits

2
 1 mmP V I efeff f  IV


     
LI

eff eff  VQ I

Inductor

eff





V
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Line

2
eff

 P I R

2
eff

 Q I X

Line
eff

*
eff

 
Line

IVS

Line

eff
    V

Line

eff

1 4 (250)
(1 4) (39 26)

j
j j


  

V OR 
Line

eff
250 

L
V V

o39.1Line

eff
20.6V

Line
eff

*
eff

 
Line

IVS o39.120.6 o36.875 103 o75.97 25 100   VAj 

OR using complex power 

Line
Load

+
Absorb Line Load

S S  S
100  

From part (c) From part (b)

( )  + ( )25 97 6505j j  
  ( ) (1025 9 07 6 05 )5+ j   751 000  VA0   j 

OR 

7( VA10 0  0 50) j =  
Supply Absorb

S S

1000 750  VAj 

 250
Supply

S o0 )
L

*(I 250  o0  1250 o36.87
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Example 10.6  Calculating Power in Parallel Loads

cos(  )v i  pf
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6   000 V 8 A000 j 
1

S
1  6000 V1 A2000 j 

2
S 10000 V20000 Aj S

The apparent power which must be supplied to these loads is 

20000| | | 100 VA  00|  j S 22.36 kVA 

C ? 

| |S

As we can see from the power triangle 

We can correct the power factor to 1

Recall that 1X
C



if we place a capacitor in parallel with the existing load 

Will cancel this
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The addition of the capacitor has reduced the line loss from 400 W to  320 W

Example  10.7

*
1 1 1

1

2
S V I 1 1P  + j Q

1 1P  = 1690 W   and  Q  3380 VAR

Another solution
2

2
P = R

R
 R

R
V

I
2

1P  = (1) 1I  2
2 2= (1) ( 26) ( 52)   1690 W

1
( )

1 j2



R 1V VOR

2

P = 
1
RV

1690 W
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*
1 1 1

1

2
S V I 1 1P  + j Q

1 1P  = 1690 W   and  Q  3380 VAR

Another solution
2

2
P = R

R
 R

R
V

I
2

1P  = (1) 1I  2
2 2= (1) ( 26) ( 52)   1690 W

1
( )

1 j2



R 1V VOR

2

1P  = 
1
RV

1690 W

Similarly
2

2
Q = X

X
 X

X
V

I
2

1Q  = (2) 1I  2
2 2= (2) ( 26) ( 52)   3380 W

j2
( )

1 j2



X 1V VOR

2

1Q  = 
2
XV 3380 W

=  0

What is the value of  ZL that will absorb maximum power
Recall

10.5 Maximum Power Transfer
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Similarly

=0  (since XL = Xth)


