KING FAHD UNIVERSITY OF PETROLEUM & MINERALS ELECTRICAL ENGINEERING DEPARTMENT

EE430- INFORMATION THEORY AND CODING SPRING SEMESTER (082)

Course Objectives:

- 1. Understand the difference between "data" and "information" in a message.
- 2. Learn how to analyze and measure the information per symbol emitted from a source.
- 3. Learn how to analyze the information-carrying capacity of the communication channel.
- 4. Learn how to design source <u>compression</u> codes to improve the efficiency of information transmission.
- 5. Learn how to adapt and tailor known error control codes for use in particular applications.
- 6. Learn the basic theory needed for data encryptions.

Course Content:

Information Theory:	6 Weeks
Uncertainty, Information, and Entropy	
Source-Coding Theorem	
Huffman Coding	
Lempel-Ziv Coding	
Discrete Memoryless Channels (DMC)	
Mutual Information	
Channel Capacity	
Channel Coding Theorem	
Error-Control Coding:	7 Weeks
Block Codes, Linear Codes, Hamming Codes	
Generator Matrix	
Parity-Check Matrix	
Syndrome	
Cyclic codes	
Convolutional Codes:	2 Weeks
Convolutional Encoder	
Tree Representation of Convolutional Codes	
Finite-State Machine Code Representation	
Trellis Representation of Convolutional Codes	
Important Dates:	
• Major Exam I (Tuesday 7 April in class time)	
• Major Exam II(Sunday 24 May in class time)	

Prerequisite: EE315, EE370

Textbook:

R. B. Wells, Applied Coding & Information Theory for Engineers, Prentice Hall, NJ 1999 Material: Ch. 1: 1.1-1.5 Ch. 2: 2.1-2.3 Ch. 4: 4.1-4.5 Ch. 5: 5.1-5.4 Ch. 6: 6.1-6.3

<u>References</u>:

- 1. B. Lathi, *Modern Digital and Analog Communication Systems*, 4th Edition, Oxford Publishing, 1998.
- 2. S. Haykin, *Communication Systems*, 4th Edition, John Wiley & Sons, 2001.
- 3. R. W. Hamming, *Coding and Information Theory*, 2nd Ed., Prentice-Hall Inc., 1986
- 4. J. Proakis and S. Salehi, *Communication Systems Engineering*, Prentice Hall, 1994.
- 5. Fazlollah M. Reza, An Introduction to Information Theory, Dover1994.
- 6. Robert McEliece, The Theory of Information and Coding, Cambridge, 2004.

GRADING

Grade Distribution	
• Attendance	05 %
Quizzes and HW	15 %
• Projects	15 %
• Major Exam I (Tuesday 7 April in class time)	15 %
• Major Exam II(Sunday 24 May in class time)	15 %
• Final Exam (Comprehensive)	35 %

- <u>Absence</u>: University policy will be applied. More than 9 unexcused absences result in DN.
- **Official Excuses**: Official excuses have to be verified from the Students' Affairs Dept. Personal excuses will not be accepted.
- No makeup for quizzes and majors. Late projects and homework assignments are not accepted.

INSTRUCTOR:

Dr. Samir Al-Ghadhban Office 59-0076 Tel: 2244 Email: <u>samir@kfupm.edu.sa</u> Web Site: <u>http://faculty.kfupm.edu.sa/ee/samir</u> or WebCT Office Hours: Sunday and Tuesday. 11:30am -1:00pm.

Desired Course Outcomes:

- 1) Students will demonstrate ability to evaluate the information rate of various information sources.
- 2) Students will demonstrate ability to design lossless data compression codes for discrete memoryless sources.
- 3) Students will demonstrate ability to evaluate the information capacity of discrete memoryless channels and determine possible code rates achievable on such channels.
- 4) Students will demonstrate an ability to compensate for channel memory through the design of appropriate data translation codes.
- 5) Students will demonstrate an understanding of the mathematical theory of linear channel codes for error detection and correction.
- 6) Students will demonstrate the ability to select and design simple linear block error correcting codes.
- 7) Students will demonstrate an ability to implement cyclic block codes using feedback shift register logic circuits.
- 8) Students will demonstrate ability to select and design simple convolutional codes.