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Overview of Pulse Modulation:

We saw in EE370 that sampling of analog signals can be used to represent signals
by discrete samples without loss of information. What are the conditions ?
Provided that the signal is band-limited, and the sampling rate is faster than the
minimum Nyquist rate.

For communication applications, the transmission of these discrete signal pulses
(instead of the full analog signal) offers many advantages, such as

— Power savings (since the samples will occupy short duty cycles)

— Efficient processing (more sophisticated signal processing will be possible)

— Robust transmission (against the effect of noise, etc)

In this lecture, we study the different types of pulse modulation schemes, and
focus more closely on the Pulse Amplitude Modulation (PAM) combined with
digital coding as found in Pulse Code Modulation (PCM)

Applications that combine PCM with time division multiplexing (TDM) are widely
used in practice, and will also be discussed in the context of digital telephony
networks

Types of Pulse Modulation:

Consider an analog signal sampled(z;ﬂ a regular period T:
g(t
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There are different ways of representing the sample values by using a
pulse train (sequence of regular pulses spaced at the sampling period).
This pulse train is like an unmodulated carrier that will be altered
according to the sample values being sent
We can have several methods of Pulse Modulation. For example, we may
use:

— Pulse Amplitude Modulation - PAM (sample value mapped to pulse amplitude)

— Pulse Width Modulation - PWM (sample value mapped to pulse width)

— Pulse Position Modulation - PPM (sample value mapped to pulse position)
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Pulse Amplitude Modulation (PAM):

This is the simplest form of pulse modulation, where the
amplitudes of the successive pulses are changed in
accordance with the value of the analog samples as illustrated
in the following figure

The figure illustrates PAM with a “sample & follow” format,
but we can also have “sample & hold” schemes where the
amplitudes are held constant at their initial values

Zram(t)

Pulse Width Modulation (PWM):

In this scheme, the default constant duration (or width) of the
basic pulses is altered according to the corresponding values
of the analog samples, as illustrated in the following figure
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Pulse Position Modulation (PPM):

In this scheme, the default fixed starting position of the basic
pulses is altered according to the values of the analog
samples, as illustrated in the figure

eem(t)
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Observations

PAM, PWM and PPM schemes are all used to transmit samples of an
analog signal in a more efficient way than transmitting the full analog
signal completely

PAM offers a clear power savings (by using short-duration pulses), but
PWM and PPM in particular can offer additional advantages in terms of
robustness to noise and distortion. This is because the “information” (i.e.,
message values) is contained in pulse duration or position, and not in its
amplitude (which is more sensitive to noise). So, if the pulse limits are
sharp (i.e., quick rise/fall times), then PWM and PPM will be detected
more robustly

However, on the downside, PAM, PWM and PPM will use more
transmission bandwidth than the original analog signal, so there is a
tradeoff between power and bandwidth efficiency by using these schemes
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Digital Pulse Modulation of Analog
Signals:

* We saw in previous lectures that analog signals can be fully
converted to digital bit streams by performing three
operations:

— Sampling: to select discrete-time samples from the analog signal

— Quantization: to confine the sampled values to a finite number of amplitude
levels

— Encoding: to represent the finite number of amplitudes by digital codewords

* These stages are illustrated in the following diagram:

dnalog input signal 5
& PR Sampler uantizer
p! N Q »  Encoder | R

itinuous time Jigl word
continuous. tin discrete time discrete time Digital - codewora

continuous amp continuous amp discrete amp

Pulse Code Modulation (PCM):

* These operations can be viewed as a combination of PAM
modulation with quantization and digital encoding.

* The resulting scheme is called Pulse Code Modulation (PCM),
and is widely used in practical transmission systems.

Quantized signal

PCM encoder

V\/ —*‘ Sampling ""‘ Quantizing "_" Encoding "
Digital data

PAM signal

Analog signal
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Features of PCM:

¢ PCM is the most commonly used method of pulse modulation because it offers
good performance in noisy environments, and is easily implemented in digital
hardware

¢ PCM is usually combined with time division multiplexing to aggregate many low-
rate signals onto a high-rate transmission line (discussed next). Timing
synchronization is an important requirement in these situations

* Adisadvantage of PCM is that the bandwidth consumed is much larger (compared
to direct analog signal transmission). However, there are techniques that can
reduce the PCM data rates, and consequently bandwidth consumption (to be
discussed in the next lecture)

* Avery typical example of PCM transmission is found in telephony networks, where
the voice signals are limited to a band less than 4KHz before being sampled at a
rate of 8000 samples/sec, and then quantized and encoded with 8 bits per sample.
The PCM bit rate (per voice line) is therefore 64 Kbps.

lllustration of TDM (with 3 signals):
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Demultiplexing of TDM Signals:
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Example: T1 Line in Digital Telephony
Transmission

Sampling at 8000 samples/s
using 8 bits per sample

4

:

PCM

4

;

T-1 line 1.544 Mbps
24 x 64 kbps + 8 kbps overhead

N
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T1 Example cont’d:

Sample n
|
S
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T-1: 8000 frames/s = 8000 x 193 bps = 1.544 Mbps

Digital Multiplexing Hierarchy in
Telephony Networks:

» Standard Digital Signal (DS) multiplexing rates are used in
telephony networks. For example, the PCM basic rate is
denoted by DSOQ, 24 DSO lines form a DS1 (T1 line), 4 DS1 lines
form a DS2 line, etc.

1
—>

24
—>

DS1 signal, 1.544Mbps

L.

24 DSO

4DS1
4
—

DS2 signal, 6.312Mbps

Mux 1
1

7DSs2

—_—

DS3 signal, 44.736Mpbs

Mux 1
1

6 DS3
6—>

Mux ™

DS4 signal
274.176Mbps
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Digital Multiplexing Hierarchy in
Telephony Networks (cont’d):

* The DS rates are mainly used is North America and Japan. In
most other countries, another hierarchy is used, which is also
based on the basic 64Kbps PCM rate. 30 PCM voice channels
are aggregated to form a 2.048Mbps E1 line (two other
64Kbps channels are reserved for control), 4 E1 lines form a
8.44bMbps E2 line, etc.

1 . E1, 2.048 Mbps

Mux
30 ]
1 E2, 8.448 Mbps
Mux
4y
E3, 34.368 Mpbs
Mux
— ] E4, 139.264 Mbps
4

Mux

3.6 Quantization Process

Amplitude quantization is defined as the process of transforming
the sample amplitude m(nT,) of a message signal m(t) at time t =
nT, into a discrete amplitude v (nT,) taken from a finite set of
possible amplitudes.

Continuous Quantizer Discrete
sample m 2(+) sample v

9/19/13



3.6 Quantization Process
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3.6 Quantization Noise

The use of quantization introduces an error defined as the

difference between the input signal m and the output signal v.

The error is called quantization noise.

1 Input wave

2 Quantized output
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3.6 Quantization Noise

Let the quantizer input m be the sample value of a zero-mean
random variable M. (If the input has a nonzero mean, we can always
remove it by subtracting the mean from the input and then adding it back
after quantization.)
A quantizer g(.) maps the input random variable M of
continuous amplitude into a discrete random variable V.

— their respective sample values m and v are related by v=g(m)

Let the quantization error be denoted by the random variable
Q of sample value g.

We may thus write g=m-v or Q=M-V

21

3.6 Quantization Noise

With the input M having zero mean, and the quantizer
assumed to be symmetric, it follows that the quantizer output
V and therefore the quantization error Q, will also have zero
mean.

Thus for a partial statistical characterization of the quantizer
in terms of output signal-to-(quantization) noise ratio, we
need only find the mean-square value of the quantization
error Q.

22
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3.6 Quantization Noise

Consider then an input m of continuous amplitude in the

range (_mmax' mmax).

Assuming a uniform quantizer of the midrise type with L
levels, we find that the step-size of the quantizer is given by:

2 mmax
L

For a uniform quantizer, the quantization error Q will have its
sample values bounded by:

A=

——<¢g<

Ao, <A
2 2

3.6 Quantization Noise

If the step-size is sufficiently small (i.e., the number of
representation levels L is sufficiently large), it is reasonable to
assume that the quantization error Q is a uniformly
distributed random variable.

A

.l_ —«,—e.'q‘_’—'—
folg) =147 2 2
0,

otherwise

With the mean of the quantization error being zero, its
variance 6%y is the same as the mean-square value:
ob = E[Q7]
Far2

= |, 7fola) dq

24
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3.6 Quantization Noise

The quantization noise variance will be:

, 1
b=} [ P
AZ
" 12
Typically, the L-ary number k, denoting the k" representation
level of the quantizer, is transmitted to the receiver in binary

form.

Let R denote the number of bits per sample used in the
construction of the binary code. We may then write L=2R or
equivalently, R=log,L

25

3.6 Quantization Noise

The step size is:

2m 2m

A — max — max
L 2k

Thus, noise variance (power) will be:

1
2 2 A-2R
O'Q —gmmax2

Let P denote the average power of the message signal m(t).
We may then express the output signal-to-noise ratio of a
uniform quantizer as:

26
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3.6 Quantization Noise

» the output signal-to-noise ratio of the quantizer
increases exponentially with increasing number of
bits per sample, R. Recognizing that an increase in
R requires a proportionate increase in the channel
(transmission) bandwidth B;.

* There is a fundamental tradeoff between
guantization noise and channel bandwidth.

27

3.6 Quantization Noise

Example: Sinusoidal Modulating Signal

* Consider the special case of a full-load sinusoidal modulating
signal of amplitude A .. Using a quantizer with L levels and R
bits for each level.

* Find the average signal power, the noise power and the signal
to noise ratio.

A

* The average signal poweris p = 3

* The quantization noise power is o3 = 4327

Ai2 3

— 2 12k
A227Rf3 2(2 )

* The output signal-to-noise ratio is (sNRj, =

28
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3.6 Quantization Noise

Example: Sinusoidal Modulating Signal
* Expressing the signal-to-noise ratio in decibels, we get
SNR,z=10log,,(SNR),=1.8+6R
TABLE 3.1 Signal-to-(quantization) noise ratio

for varying number of representation levels
for sinusoidal modulation

Number of ot toNo
Number of Representation Bits per Signal-to-Noise
) Liveli L Sample, R Ratio (dB)
32 5 31.8
64 6 378
128 7 43.8
256 8 49.8

29
3.7 Pulse-Code Modulation
Source of -
: PCM signal
- Low-
t_cont[nuous Omé?ss Sampler Quantizer Encoder |—> applied to
|mesrir;2?age channel input
(a) Transmitter
. Regenerated
s?litaolnergdpu?:gd Regenerative | Regenerative PCM signal
at %han’;el output > repeater > repeater applied to the
P receiver

(b) Transmission path

Final Regeneration R i
channel —=»{ egener Decoder econstruction Destination
output circuit filter

(c) Receiver

30
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3.7 Pulse-Code Modulation

Binary data 0 1 1 0 1 0 0 1

i [ Line codes for the electrical
n i, . representations of binary

0 J_ data.

" u,) (a) Unipolar NRZ signaling.
1 N0.0 N (b) Polar NRZ signaling.

’ " (c) Unipolar RZ signaling.
T I (d) Bipolar RZ signaling.

° (e) Split-phase or

o L - Manchester code.

3.12 Delta Modulation

In delta modulation* (DM), an incoming message signal is
oversampled (i.e., at a rate much higher than the Nyquist
rate) to purposely increase the correlation between adjacent
samples of the signal. This is done to permit the use of a
simple quantizing strategy for constructing the encoded signal

m(r)

Staircase

‘)1 T Lf T apprlo:\r(?)al\on

q

<

Binary
e htor 00 1.0 1 1 1 1 101000000
output

(b)
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at modulator

output

3.12 Delta Modulation

m(z)

e[n] = m[n] — myln — 1]
A sgn(e[n])
my[n — 1] + e, [n]

Staircase

Al T P

®
Y
Il

3
e
&

[

(a)

0010111110100 00O0O0O0
(b)

where e[n] is an error signal representing the difference between the present sample m/[n]
of the input signal and the latest approximation m [n — 1] to it,

e,[n] is the quantized version of e[n],

and sgn(.) is the signum function.

Finally, the quantizer output m,[n] is coded to produce the DM signal.

3.12 Delta Modulation

* At the sampling instant nT,, the accumulator increments the approximation by a
step A in a positive or negative direction, depending on the algebraic sign of the
error sample e[n].

* If the input sample m[n] is greater than the most recent approximation mq[n], a
positive increment +A is applied to the approximation.

* If, on the other hand, the input sample is smaller, a negative increment —A is
applied to the approximation.

* In this way, the accumulator does the best it can to track the input samples by one
step (of amplitude +A or —A) at a time.

Comparator
Sampled + o~ el | opepit | ")
message signal ’
min]

: > Encoder f——am bu
quantizer wave

myln =11 ‘

B maln] = A& 3, sgleli)

) n
— [ =3 e,li]
- -1 =1
S L mln]

____________________ 34
Accumulator
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Sampled
channel ===~ Decoder

3.12 Delta Modulation

The staircase approximation m,(t) is reconstructed by passing the
sequence of positive and negative pulses, produced at the decoder
output, through an accumulator in a manner similar to that used in the
transmitter.

The out-of- band quantization noise in the high-frequency staircase
waveform m,(t) is rejected by passing it through a low-pass filter with a
bandwidth equal to the original message bandwidth.

Low-pass . Reconstructed
filter message signal

output

Accumulator

35

3.12 Delta Modulation

Delta modulation is subject to two types of quantization
error: slope overload distortion and granular noise

Granular noise

Slope-overload

distortion \ \
m(t)
4 —| 7 |

Staircase
approximation
mq(z‘)

>3

36
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3.12 Delta Modulation

* Slope overload distortion: step-size A is too small for the
staircase approximation m,(t) to follow a steep segment of
the input waveform m(t).

Startup /S]npé overload
/m,,m
M
X A dmi(t)
(c) = = max|—5—
T, dt
dylk]
(d)
5,' Aerir e 1 Error d(1)
(e)

Figure 6.20  Delta modulation

37

3.12 Delta Modulation

* Granular noise: occurs when the step size A
is too large relative to the local slope characteristics of the
input waveform m(t).

Granular noise

Slope-overload
distortion

m(t)

Staircase
approximation
mq(r)

38
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3.12 Delta Modulation

We thus see that there is a need to have a large step-size to
accommodate a wide dynamic range, whereas a small step size
is required for the accurate representation of relatively low-level
signals.

To satisfy such a requirement, we need to make the delta
modulator "adaptive," in the sense that the step size is made to
vary in accordance with the input signal.

3.12 Delta-Sigma Modulation

* The quantizer input in the conventional form of delta modulation
may be viewed as an approximation to the derivative of the
incoming message signal.

* This behavior leads to a drawback of delta modulation in that
transmission disturbances such as noise result in an accumulative
error in the demodulated signal.

* This drawback can be overcome by integrating the message signal
prior to delta modulation.

— The low-frequency content of the input signal is pre-emphasized.

— Correlation between adjacent samples of the delta modulator input is
increased which tends to improve overall system performance by
reducing the variance of the error signal at the quantizer input.

— Design of the receiver is simplified.

40
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3.12 Delta-Sigma Modulation

Pulse
generator
Pulse modulator
| |
2t H
Integrator 1 comoarator | ard limiter :
|
Message o - 1 , Estimate of
signa fn'r z : — > X - —] LG,"’l,i?SS —> message
mie) 9 | - : signal
|
_______________ |
Integrator 2
I
Transmitter Receiver
Pulse
generator
Pulse modulator
[
Comparator  Integrator Hard limiter I :
Message 4+ ,— | Low-pass Estimate of
signal —>{ %, I»IE — —={ x — “,’”,%‘;’ —> message
min - ] :

— signal
f === |

Transmitter Receiver
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3.13 Linear Prediction

In delta modulation, simplicity of implementations of both
the transmitter and receiver is attained by using a sampling
rate far in excess of that needed for pulse-code modulation.

The price paid for this benefit is a corresponding increase in
the transmission and therefore channel bandwidth.

We may wish to trade increased system complexity for a
reduced channel bandwidth.

A signal-processing operation basic to the attainment of this
latter design objective is prediction.

42
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3.13 Linear Prediction

* Consider a finite-duration impulse response (FIR) discrete-time filter which
involves the use of three functional blocks:
— Set of p unit-delay elements, each of which is represented by z-%.
— Set of multipliers involving the filter coefficients w;, w,,. .., w,.
— Set of "adders" used to sum the scaled versions of the delayed inputs x/n - 1],
x[n - 2], ..., x[n - p] to produce the output X[n]
*  The filter output X[n] or more precisely, the /ipear prediction of the input,

is thus defined by the convolution sum i[n]= Zwkx[n_ k]
k=1

xln-11 x[n-2] xln-p+1]
Input *
—_— -1 -1 v e

x[n]
G.

x[n-pl

Prediction
Tl

43

3.13 Linear Prediction

* The prediction error, denoted by e[n], is defined
as the difference between x[n] and the prediction x[n]

e[n]= x[n]—x[n]
¢ The design objective is to choose the filter coefficients w,,

W,,. . ., W, SO as to minimize an index of performance, J,
defined as the mean-square error:

J=E[[n]]

44
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3.13 Linear Prediction

Expanding the mean-squared error:

p P
J = El*n)] - 2 S w,Elxlnleln — k] + 2, 3, wpsElxln — jlxln = K]

We assume that the input signal x(t) is the sample function of
a stationary process X(t) of zero mean; that is, E[x[n]] is zero
for all n. Define
g% = variance of a samp}e of the process X(t) at time T,
= E|x*[n]] — (Elx[n]])*
= E[x’[n]]

Rx(kT,) = autocorrelation of the process X(t) for a lag of kT,
= Rx[k]
= E[x[n]x[n — k]]

45

3.13 Linear Prediction

Accordingly, we may rewrite J in the simplified form:
P P r )
J= ok —2 2 wiRx[k] + Z kE ijka[k_ 7l
kw1 j=1 k=1

Differentiating the index of performance J with respect to the
filter coefficient w, and setting the result equal to zero, and
then rearranging terms, we obtain:

S wRilk — 71 = Rxlk] = Ru—kl,  k=1,2,....0

=1

* The optimality equations are called the Wiener-Hopf

equations for linear prediction.

46
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3.13 Linear Prediction

Wiener-Hopf Equations in Matrix Form:

w, = p-by-1 optimum coefficient vector
= [y Wy« v - s WylT
ry = p-by-1 autocorrelation vector
= [Rx[1], Rx[2], ..., Rxlpl]”
-Ry = p-by-p autocorrelation matrix

Rx[0] Rx[1] - Rylp - 1]
_ Rx(1] Rx[0] -+« Rxlp — 2]
Rulp — 1] Rfp =2 -++  Rsl0]

We may thus simplify the set of equationsas  Rxw, = rx

47

3.13 Linear Prediction

* We assume that the autocorrelation matrix R, is nonsingular,

so that its inverse exists.
* We may then solve for the coefficient vector w, by

multiplying both sides of this equation by the inverse matrix

R, ! obtaining the optimum solution:

W, = R;{‘l'x

* The minimum mean-square value of the prediction error is:

— 2 ™ -
Jein = 0% — l‘xRxll'x

* The quadratic term r,'R,Ir, is always positive

48
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3.13 Linear Adaptive Prediction

Calculating the weight vector of a linear predictor requires
knowledge of the autocorrelation function R,[k] of the input
sequence [x[n]] for lags k=0,1,. . . ,p, where p is the prediction
order.

What if knowledge of R, [k] for varying k is not available? In these
situations, which occur frequently in practice, we may resort to the
use of an adaptive predictor.

The predictor is adaptive in the following sense:

— Computation of the tap weights w, k= 1,2,..., p, proceeds in a "recursive"
manner, starting from some arbitrary initial values of the tap weights.

— The algorithm used to adjust the tap weights (from one iteration to the
next) is "self-designed," operating solely on the basis of available data.

49

3.13 Linear Adaptive Prediction

The aim of the algorithm is to find the minimum point of the
bowl-shaped error surface that describes the dependence of
the cost function J on the tap weights. It is therefore
intuitively reasonable that successive adjustments to the tap-
weights of the predictor be made in the direction of the
steepest descent of the error surface, that is, in a direction
opposite to the gradient vector whose elements are defined
by: p

gk—gw—k, k=1,2,...,p

This is the idea behind the method of steepest descent.

50
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3.13 Linear Adaptive Prediction

* Let w,[n] denote the value of the k™ tap-weight at iteration n.
Then the updated value of this weight at iterationn + 1 is
defined by:

. 1
wyln + 1] = wyln] — 3 Mg k=1,2,...,p

* Where U is a step-size parameter that controls the speed of
adaptation, and the factor 1/2 is included for convenience of
presentation.

* Differentiating the cost function J with respect to w,, we
readily find that:

P
g = =2Rx[k] + 2 2:1 wRx[k = j]

P
= —2E[x[nlx[n — k]] + 2 2, wiE[x[n — flx[n — kI, k=1,2,...,p

3.13 Linear Adaptive Prediction

* Thus, the estimate of g, at iteration n is:

»
Buln) = =2x[nlx[n — k] + 2 2: winlxn — jlx[n — k.,  k=12,...,p

The adaptive tap weights will be updated as:

i
tWeln + 1] = iy [n] + px(n Iz](x[n] - 21 w,[n]x[n — il)

= w[n] + px[n — kle[n], k=12,...,p
where e[n] is the prediction error defined as:

Xn] = _\3 wyx(n — k)
k=

e[n] = x[n] - i winlx[n ;] /

j=1 Input Linear predictor: Prediction
x[n z {®ln1} fn

Error
e[n]
+ -
z
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3.14 Differential Pulse-Code
Modulation

When a voice or video signal is sampled at a rate slightly higher than the
Nyquist rate as usually done in pulse-code modulation, the resulting
sampled signal is found to exhibit a high degree of correlation between
adjacent samples.

The meaning of this high correlation is that, in an average sense, the signal
does not change rapidly from one sample to the next, and as a result, the
difference between adjacent samples has a variance that is smaller than
the variance of the signal itself.

When these highly correlated samples are encoded, as in the standard
PCM system, the resulting encoded signal contains redundant information.
This means that symbols that are not absolutely essential to the
transmission of information are generated as a result of the encoding
process.

By removing this redundancy before encoding, we obtain a more efficient
coded signal, which is the basic idea behind differential pulse-code
modulation.

53

3.14 Differential Pulse-Code
Modulation

Now if we know the past behavior of a signal up to a certain point in time,
we may use prediction to make an estimate of a future value of the signal.
Suppose then a baseband signal m(t) is sampled at the rate f, = 1/T; to
produce the sequence m[n] whose samples are T, seconds apart. The fact
that it is possible to predict future values of the signal m(t) provides
motivation for the differential quantization scheme.

In this scheme, the input signal to the quantizer is defined by ¢l = m{»] — 7n]

Comparator

Sampled o, el egln]
input { X Quantizer Encoder |—s DPCM

wave
mn)

+
n + / s \
mln] §——--3>{3 |

Prediction
filter

mq[n]
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3.14 Differential Pulse-Code
Modulation (DPCM)

The quantizer output may be expressed as eq[n] =e[n] +q[n]
The prediction-filter inputis  m_[n]=rm[n] +e,[n]
Then  m,[n]=m[n] +e[n]+q[n]

Since Mmlnl+elnl=mln]  weget m, [n]=m[n]+qln]

Comparator

Sampled o eln] egln]
input { Y Quantizer Encoder |—s» DPCM

mn) R

wave

+
n + / s \
mln] §——--3>{3 |

Prediction
filter

mq[n]
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3.14 Differential Pulse-Code
Modulation (DPCM)

m,[n]=m[n]+q[n] represents a quantized version of the input
sample m[n].
That is, irrespective of the properties of the prediction filter, the quantized
sample m,[n] at the prediction filter input differs from the original input
sample m[n] by the quantization error g[n].
Accordingly, if the prediction is good, the variance of the prediction error
e[n] will be smaller than the variance of m[n], so that a quantizer with a
given number of levels can be adjusted to produce a quantization error
with a smaller variance than would be possible if the input sample m[n]
were quantized directly as in a standard PCM system.
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3.14 DPCM Receiver

The receiver for reconstructing the quantized version of the input consists
of a decoder to reconstruct the quantized error signal.

The quantized version of the original input is reconstructed from the
decoder output using the same prediction filter used in the transmitter.
In the absence of channel noise, we find that the encoded signal at the
receiver input is identical to the encoded signal at the transmitter output.
Accordingly, the corresponding receiver output is equal to m [n] which
differs from the original input m/n] only by the quantization error g/n]
incurred as a result of quantizing the prediction error e[n].

+

Input —=>>{ Decoder —=>{ ¥, } . Output

+
Prediction

filter
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3.14 DPCM vs. Delta Modulation

What is the difference between DPCM and Delta Modulation ?

Differential pulse-code modulation includes delta modulation as a special
case.

In particular, comparing the DPCM system the DM system, we see that
they are basically similar, except for two important differences:

— the use of a one-bit (two-level) quantizer in the delta modulator

— the replacement of the prediction filter by a single delay element (i.e., zero prediction
order).

Thus, DM is the 1-bit version of DPCM.
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3.14 DPCM

The output signal-to-noise ratio of the DPCM system is:
O

o
Where o2, is the variance of the original input sample m/[n], assumed to be of

zero mean, and o?, is the variance of the quantization error g/n].

SNR, =

We may rewrite the SNR to be:

o, o}
SNR, =| 2 || =£ |=G,(SNR
(2] 2 o (s,

E Q

where o2 is the variance of the prediction error AND G, is the processing
gain produced by the differential quantization scheme
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