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Discrete Channel Model 
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Binary Symmetric Channels 
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Linear	
  Block	
  Code	
  
 
 
The parity bits of  linear block codes are linear combination 

of the message. Therefore, we can represent  the 
encoder by a linear system described by matrices.  
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(n, k) Linear Block Codes over GF(2)  

  
Let the message m =(m0 ,m1,…….,mk-1 ) be an arbitrary k 

bit  
The linear (n, k) code over GF(2) is the set of 2k codewords 

of row-vector form 
                       c =(c0 ,c1,…….,cn-1 )  
where cj ∈GF(2)  

The code rate is R=k/n. 
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 linear Encoder. 
By linear transformation  
  
c =m ⋅G =m0g0 + m1g0 +……+ mk-1gk-1  
 The code C is called a k-dimensional subspace. 
G is called a generator matrix of the code. 
Here G is a k ×n matrix of rank k of elements from GF(2), gi is the i-th 

row vector of G.  
The rows of G are linearly independent since G is assumed to have 

rank k.  
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Example:  
 

(7, 4) Hamming code over GF(2)  
The encoding equation for this code is given by  
   c0 = m0 

c1 = m1 
c2 = m2 
c3 = m3 
c4 = m0 + m1 + m2 
c5 = m1 + m2 + m3 
c6 = m0 + m1 + m3 
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Hamming Distance  
•  The Hamming distance is the most important measure in 

block codes. The Hamming distance is a measure of the 
distance between two codewords and is defined as the 
number of different bits between two codewords. 

•    
•  For example, the distance between codeword 000 and 

codeword 011 is two bits.  
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Example   repetition code of length 4  

•  We can make a repetition code of length 4 that correct 
single-bit error and detect two-bit errors. This is an error 
detection and correction code. There are two valid 
codewords {0000, 1111}.  

•  Decoding rule: 
•  Find the Hamming distance between the received 

codeword and the two valid codewords which are {0000, 
1111}. 

•   If Hamming distance ≤ 1, then decode received 
codeword to the closest valid codeword.  

•   If Hamming distance = 2, then declare an error  

10 
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Example   repetition code of length 4  
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Hamming Distance and Code 
Capability  

12 

For every pair , we can calculate a non-zero, Hamming Distance  
 

dmin = min
AllCodeWords

dH (c
__
i , c
__

j ){ }
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definition: 
An (n, k) block code is said to be linear if the vector sum of two 

codeword is a codeword. 
Zero vector must be a codeword. 
 
Ex. 
C0 = 0 0 0 0                   C2=  1 0 1 0 
C1=  0 1 0 1                   C3=  1 1 1 1 
  
C0 +C1 =C1, C1 +C2=C3, C3+C2=C1  ………..etc. 
Ci+Cj  є C so it is a linear code. 
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Linear	
  Systematic	
  Block	
  Code:	
  
	
  

   In systematic from the codeword C is comprised of an 
information segment and a set of n-k symbols that are 
linear combinations of certain information symbols, 
determined by the P matrix. 
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Linear	
  Systematic	
  Block	
  Code:	
  
That is  
  
 
  
    
 
message                                    codeword  
(m0 ,m1,…….,mk-1 ) ↔(m0 ,m1,……,mk-1 , ck ,ck+1,..,cn-1 ) The second 

set of equations, given above, is called the set of parity-check 
equations. 
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Linear	
  Systematic	
  Block	
  Code:	
  
An (n, k) linear systematic code is completely specified by a k × n 

generator matrix of the following form. 
 
 
 
 
 
 
 
where Ik  is the k × k identity matrix. 
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Parity-­‐check	
  matrix	
  
	
  

An (n, k) linear code can also be specified by an  (n - k) × k matrix 
H. 

 
 
 
G⋅ HT  = 0 . 
where PT is the transpose of P 
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Linear	
  Encoder	
  
  
   c=m G 

 
c:1x16 codeword  
m: 1x9 message bits 
G:  9x16 generator matrix 
  
 At the receiver we need to find the syndrome bits. 
Syndrome vector   s=[s0 s1 s2 s3 s4 s5 s6] 
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Decoding	
  	
  
At the receiver we need to find the syndrome bits. 
Syndrome vector   s=[s0 s1 s2 s3 s4 s5 s6] 
 

S= v HT 
The matrix H is called the parity check matrix and in the above example  

it has size 7x16 
 note: the superscript T stand for matrix transpose 
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Linear	
  Block	
  Codes	
  
•  the number of codeworde is 2k since there are 2k distinct messages. 
•  The set of vectors {gi} are linearly independent since we must have a 

set of unique codewords. 
•  linearly independent vectors mean that no vector gi can be 

expressed as a linear combination of the other vectors. 
•  These vectors are called bases  vector of the vector space C. 
•  The dimension of this  vector space is the number of the basis vector 

which are k. 
•  Gi  є Cà the rows of G are all valid codewords. 
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 Hamming Codes 
•  The Hamming Codes are family of single-error correcting 

codes. 
•  They are perfect codes => redundant bit is equal to the 

Hamming bound. 
•  A Hamming code exists for every r ≥ 3. 
•  The Block length is n=2r-1, r ≥ 3. 
•  and the rate is: 
•  (n,k)=(2r-1, 2r-r-1) 
•  So, Hamming code can be (7,4),(15,11),(31,26),...,etc.21 

2 1
2 1

r

r
rR − −=
−
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Hamming Codes 

•  To specify a Hamming Code of length 2r-1: 

–  begin with the systematic parity check matrix Hrxn. 

–  Start by the identity Matrix Irxr, then fill the remaining k 

columns with remaining nonzero binary vectors of 

length r. 
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Example1: (7,4) systematic 
Hamming code 

•  n=7, k=4 → r = 7-4 =3 
 parity check matrix (H): 

( ) | T
r x r r x n

H r x n I P⎡ ⎤= −⎣ ⎦

3 7

1 0 0 1 1 0 1
( ) 0 1 0 1 0 1 1

0 0 1 0 1 1 1
x

H r x n
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦
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Example1: continue 

•  Now the generator matrix (G) 
 ( ) | k x k k x n

G k x n P I⎡ ⎤= ⎣ ⎦

4 7

1 1 0 1 0 0 0
1 0 1 0 1 0 0(4 7) 0 1 1 0 0 1 0
1 1 1 0 0 0 1 x

G x
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
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Error Correction and detection 
•  For all Hamming codes, dmin=3. 
So, we have single error correction or double error 

detection. 
•  The codes may be decoded using a syndrome table.   

Ts e H=

For correcting correctable error pattern: 
•  Evaluate the syndrom s, from s= v*HT 
•  Look up the corresponding e in the 

syndrom table. 
•  Then, the correct codeword, c= v + e 
 

l * notice that the syndrome is just the ith column of H 
 

e s 
1000000 
0100000 
0010000 
0001000 
0000100 
0000010 
0000001 

100 
010 
001 
110 
101 
011 
111 
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Error Rate Performance 

•  The probability of an uncorrected error in a block is: 

•  For large values of n, this calculation maybe difficult. 
However, we can use the following approximation: 

Block error probability: 

( )
0

1 (1 )
t

j n j
B

j

nP P Pj
−

=

= − −∑

0

( )1 !

jt
np

B
j

nPP e j
−

=

≈ − ∑
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Notes on the crossover 
probability 

•  In order to correctly evaluate the crossover probability of 
the coded system, we have to take into account the Energy 
distribution of the information bits over the coded bits.  

For example, let Eb be the Energy of information bit mi. If the 
coded rate is R, then the energy of each coded bit Ci is 
REb. Since R ≤ 1, notice that the energy of each coded bit 
will be less than the information bit. 
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Notes on the crossover 
probability (Continue) 

•  For example, over a binary systematic channel (BSC), 
the crossover probability is 

 
•  if gamma is the SNR for the information bits, then, the 

crossover probability after coding is 
 
•  Notice that the crossover probability for each bit of the 

coded system will be worse (larger) than the uncoded 
system since the SNR is reduced. However, with error 
correction, the overall performance should be better. 

( 2 )uncodedP Q γ=

( 2 )codedP Q Rγ=
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Convolutional Codes 
 
Example: 
 
                                       Convolutional Encoder 
 
  
 
 
 
 
 
 
 
 
 
 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)(xm
⊕

⊕

)(0 xC

)(1 xC

1D 2D

2,
2
1 == MRate

. .

30 

Continue . . . 
In above example , 
 
- The memory depth of the registrars is M = 2 
 
- For each one bit input , there are two bits outputs. 
 
           Rate   
 
- Since the effect of any one data input lasts over 

 
             Constraint length = v = M+1 
 
- The encoder above is a finite impulse response [F I R] encoder. 
 

 

2
1==

n
kR→

v = M +1= 2 +1= 3bits
→
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Continue . . . 
- The generator polynomials are : 
 
 
 
  
 
 
 
- In general, the memory depth M of a binary convolutional code is: 
 

 

21)(
0

xxxg ++=
2

1 1)( xxg +=

)()()( 00 xgxmxc =⇒

)()()( 11 xgxmxc =⇒

)](),...,(deg[max 10 xgxgM n−=
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Structural Properties of 
Convolutional Codes 

 

 
 

  

- State Diagram and Trellis Representations. 
 
- - State Diagram: 
 
- There are       states in an encoder with M memory elements. 
 
- For the previous example,  
 
- - Let us name the states :  
 

  

RegiserShift 
 theof Contents}

M2
states422 =

11
01
10
00

3

2

1

0

=
=
=
=

S
S
S
S
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- We can draw the state diagram from observing the operation of the Encoder.  

00 11

01

10

00/0

11/1

00/1

11/0

10/0

01/0

01/1

10/1

input output

10/ ccm 1S

3S

2S

0S

34 

Continue . . . 
•  So, we can follow the state transition and know the output codeword for an input 

sequence. 
 
•  For example , m=[00101101] 
 
 
•  The output codeword will be (starting from state zero) 
 
•  C=[11 10 00 01 0100 10 11] 

inputFirst  

outputFirst  
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Continue . . . 
- Trellis Diagram 

10/0
11/0
10/0
00/0

10/1
00/1
01/1
11/1 .
.. .
. ..

.

t 1+t

index  time

3

2

1

0

S
S
S
S
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Continue . . . 
•  4 – State Trellis Diagram. 
 
•     transition branch from each Node [state]. 
 
•  The trellis diagram is very important in analyzing the Hamming distance of 

the code. 
 
•  Also, Decoding is based on the Viterbi algorithm which is based on the trellis 

diagram.  
 
•  Convolutional Codes are Linear codes. 
 
•  The Hamming distance properties of any two code sequences in the trellis 

are equivalent to the Hamming distance properties between some code 
sequence and the all-zero code sequence. 

k2
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Decoder: The Viterbi Algorithm 
 Example:Example:For the convolutional code example in the previous lecture, 

starting from state zero, Decode the following received sequence. 

Add the weight of the 
path at each state

Compute the two possible paths 
at each state and select the 
one with less cumulative 
Hamming weight 

⇒ This is called 
the survival 
path

At the end of the 
trellis, select the 
path with the 
minimum 
cumulative 
Hamming weight

This is the 
survival 
path in 
this 
example

Decoded Decoded 
sequence is sequence is 
m=[10 1110]m=[10 1110]
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Simulation study of coded BPSK 
over AWGN and Fading channels 
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