## **Multiple Access Techniques**

## **Code Division Multiple Access (CDMA)**

- Earth stations transmit continuously and together on the same frequency band.
- Interference exists between the different earth stations. However, this interference is resolved at the receiver, by identifying the signature of each transmitter.
- This signature is a binary sequence called "code". These codes must have the following properties:
  - ⇒ Each code must be easily distinguishable from a replica of itself shifted in time.
  - ⇒ Each code must be easily distinguishable regardless of the other codes used by the network.
- CDMA depends on the availability of greater bandwidth than required to transmit the information alone.

 $\Rightarrow$  This is the reason for calling it SPREAD SPECTRUM.

There are two techniques used in CDMA:

- 1. Direct sequence,
- 2. Frequency hopping.
- 1. Direct Sequence (DS CDMA):





**Spectral Occupation:** 

The spectrum of the carrier c(t), of power C and frequency fc is given by:



Spectrum is broadened by the spreading ratio  $R_c/R_b$ . This is the result of combining the message with the chip sequence.

Realization of Multiple Access:

Received signal at the earth station is the wanted carrier together with all other carriers ci(t) of the (N-1) other users (i= 1, 2, ..... (N-1))

 $\therefore r(t) = c(t) + \sum c_i(t)$ 

where  $c(t) = m(t)p(t)\cos\omega_c t$ 

and  $\sum c_i(t) = \sum m_i(t) p_i(t) \cos \omega_c t$ 

 $\therefore x(t) = m(t) p^{2}(t) + \sum m_{i}(t) p_{i}(t) p(t)$  $= m(t) + \sum m_{i}(t) p_{i}(t) p(t)$ 

If the codes have low cross-correlation function, then the second term (which is like noise) will be very small and can be neglected.

Example:

PN sequence +1, +1, +1, -1, +1, -1, -1 is used to spread the incoming bits -1 and +1.

:. +1 in the original bit stream would be transmitted by the chip stream:

+1, +1, +1, -1, +1, -1, -1

and -1 in the original stream is transmitted by the chip stream:

-1, -1, -1, +1, -1, +1, +1

**Multiple Access Techniques** 



The original bit stream can be recovered at the receiver if we multiply the received stream by a synchronized copy of the PN (Pseudo-random) sequence, which was used at the transmitter.

