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Announcements

* Nice job on the first checkout

 Rover 2 checkout
— Mon. 17 November, 3:45 pm

— GPS, SD Card, and Color/Rad sensor are only
major hardware components left!

* VOTE TOMORROW!II
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Source Material

e SMAD: Chapters 6-7

 Bate, Mueller, White — “Fundamentals of
Astrodynamics”

e AA279 — Space Mechanics
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Kepler’s Laws

1. The orbit of each planet is an ellipse, with
the sun at a focus.

2. Theline joining the planet to the sun
sweeps out equal areas in equal times.

3. The square of the period of a planet is
proportional to the cube of its mean
distance from the sun.
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Conic Sections
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Orbit Geometry
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Circle Ellipse

Parabola Hyperbola

Figure 1.5-3 Geometrical dimensions common to all conic sections
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Elliptical Orbit Geometry

General: Periapsis Apoapsis
Sun: Perihelion Aphelion
Earth: Perigee Apogee

Moon: Perilune Apolune

Periapsis

Apoapsis ‘a

Fig. 2.3 Elliptical orbit.
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Orbit Equations

Two-Body Equation of Motion
- _ Nm’*
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= Uiprust + aperturbation , M= GM’ G =6.674*10

Specific Mechanical Energy and Specific Angular Momentum
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Orbital Period

3 Orbit Type
T =21w |—

Circle E<O
Trajectory Equation Alfreee O<e<l E<0
Parabola e=1 E=0
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Coordinate Systems
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. \ . N . vernal equinox
Figure 2.2-1 Heliocentric—ecliptic coordinate system direction

Figure 2.2-2 Geocentric-equatorial coordinate system

North Y
Celestial Pole .

Figure 2.2-3 Right ascension—declination coordinate system

STANFORD

Space and Systems

E N G | N E E R I N G Development Laboratory




Orbital Parameters

* Orbital or Keplerian Elements

.-"f

N Perigee
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Vernal
Equinox

XI
Ascending

node

Figure 3.11 Characterization of an ideal orbit and the satellite position by
Keplenan elements: {a, &, /, {1, w, and v}
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Orbital Parameters

a, semi-major axis: size of the orbit
e, eccentricity: shape of the orbit

i, inclination: angle between the angular momentum vector and
Earth’s rotation axis

Q, longitude of the ascending node: angle between vernal equinox
direction and the point where the orbit crosses the equatorial plane
in a northerly direction

w, argument of periapsis: angle between the ascending node and
the orbit’s periapsis

v, true anomaly: angle between periapsis and the satellite’s current
location

STANFORD
ENGINEERING




Orbital Parameters |

* [1, longitude of periapsis
* u, argument of latitude

at epoch |
* |, true longitude at epoch -~ ;%
[1=Q0+w W;
MO =wW+V i / -
“’::f -L/’f.
[, =Q+w+V G
8 h\
A \
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Keplerian Elements Formats

 NASA (2-line) Format

1 255440 93067A 05286.7686€59%36 .00023787 00000-0 18021-3 0 54532
2 25544 051.6447 013.42%4 0001367 098.1184 352.9371 15.741016213584341

« AMSAT Verbose Format

Satellite: ISS

Catalog number: 25544

Epoch time: 05286.76865936
Element set: 545

Inclination: 051.6447 deg

RA of node: 013.4294 deg
Eccentricity: 0.00013&7

Lrg of perigee: 09%8.1184 deg
Mean anomaly: 352.5371 deg

Mean motion: 15.74101621 rev/day
Decay rate: 2.5787e-04 rev/day”2
Epoch rewv: 35434

Checksum: 320
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Ground Tracks

SatTrack V3.1 Graphic Tracking Display o 7 WIIIIIIIP,
Orbit: 22919 Azi: 168 Ele: -4 Lat: BN Lng: 116 W  11Jun0d4 16:05:30 PDT
|

_H___j .
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%

I._.I .\.\
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I'r
III
)

Lround Track: DJ15XR 922.9 km WSW of Clipperton Island (France)
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GEO - Geosynchrono
~35800km

Around Equator

LEO - Low Earth Orbit
200-1200 km

HEO - Highly Elliptical Orbit
Orbital height varies
GTO - Geo Transfer Orbi

Also MEOs
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Interesting Orbit Types

* Polar Orbits e Sun Synchronous
— LEO orbits with high inclination — Passes over any given point at
and travel near the poles the same local solar time
e Equatorial Orbits — Approx. constant orientation

— Low inclination and travel near with respect to the Sun

the equator — Orbit must precess ~1

. G h degree/day eastward (600-800
€0synchronous km, ~98° inclination)
— Orbital period matches Earth’s

sidereal rotation period

 Molniya

— Returns to the same place in the — High eccentricity

sky at same time each day — ™12 hr period, 63.4° inclination

e Geostationary * GPS

— Circular, 0° inclination — ~12 hr period, 26,600 km

geosynchronous orbit e Lagrange Points

— Gravitational equilibria
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Sun Synchronous Orbit
Orbit rotates to

maintain same angle
with sun
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Orbit with Respect to the Sun

Terminator Orbit (no eclipse)

/ (twilight)

\

/ Max Eclipse

Inclined (partial eclipse) (noon-midnight)

Sun
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Ites
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ANFORD
NGINEERING

L

= 7
AT Tling o
/ )
£ t_
L]
4
-




Lagrange Points

* Positions where the gravitational pull of the two large
masses precisely equals the centripetal force required to
rotate with them

L 4

L

il
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L, and Examples

60°
SR ___I_ _______ E ST _E_-
60° ! 2

* Objects at L, orbit with same period as Earth
* Earth “weakens” the pull of the Sun and slows the orbit down

* Sun-Earth L, good for sun observations
— SOHO: Solar and Heliospheric Observatory
— ACE: Advanced Composition Explorer
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L, and Examples

60°
SR ___I_ _______ E ST _E_-
60° ! 2

* Objects at L, orbit with same period as Earth
e Earth “strengthens” the pull of the Sun and speeds up the orbit

* Sun-Earth L, good for telescope missions
— WMAP: Wilkinson Microwave Anisotropy Probe
— ACE: Advanced Composition Explorer
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L, and L Examples
AN

* Also called triangular Lagrange or Trojan points
 Only stable Lagrange Points

* Jupiter, Saturn, and Neptune have objects caught in their L, and L.
points
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Orbit Transfer
LEO - Low Earth Orbit

from a shuttle launch - 280 km

S

Want to Change Orbit
LEO to GEO

”
How? 35,786 km

V = 3.0727 km/s
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Orbit Transfer - How

1. Change to a GTO (GEO transfer Orbit)
Want:
Vp =10.169 km/s
Va =1.606 km/s
For GTO
2. Circularize orbit

Need

V = 3.0727 km/s for GEO
Change V = 3.0727-1.606 = 1.4667 km/s

3. Burn at Va to increase V to 3.0727 km/s

for circular orbit at GEQ meses & soses
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Orbit Transfer Methods

A. High Energy 8. Hohmann Transfer

C. Low Thrust Chemical D. Electric Propuilsion
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Orbit Perturbations

 Will your satellite stay where you put it?

* |sthere anything that will change the
satellite’s orbit?
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On-Orbit Accelerations
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Solar Pressure

e Solar Sails -/
— Sailing on the solar r i .
wind - ;f:ﬁ_
* Canweuseitina R
cube? TN | !

— Sail to the...?
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Atmospheric Drag

/ Drag Coefficient

: p(C A/ m)V? (6.21)

CID =—5

INITIAL HIGH INTERMED| ATE
ELLIPTICAL ORBIT ORBIT
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Ballistic Coefficient

Ballistic Coefficient

Bc = K (Mass/Cross Sectional Area)

How do they go through the atmosphere?

Which stays in orbit longer - a bowling ball or a balloon of the

same size?
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The Earth is not a Sphere!

Reo — Rpisre =21.37T kM

Js 108263 = 10—

POLAR BULGE 16.5 M

J3= = 2.53215 % 10

Fig. 11.21 Shape of the Earth.
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Non-Spherical Effect
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Inclination and J,

Oblatness causes

. . Oblatness causes
rotation clockwise

rotation counter

Prograde Orbit Retrograde Orbit
I1<90 I1>90,
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J, Effects
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Importance of Orbits to a Mission

* How does the orbit affect mission design?
— Thermal issues

— Ground tracking, satellite visibility
* Link budget

— Power generation

— Navigation and tracking
* Sun sensor visibility, eclipse times

— Propulsion, orbit maintenance
— Payload concerns
— Radiation amounts
— Launch site and providers
e Cost of the launch
e Areyou the primary?
* Range safety
* When should you start analyzing orbits to satisfy mission
requirements?
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Software and Links

e Keplerian elements online
— http://www.amsat.org/amsat/keps/menu.html
— http://celestrak.com/

e Tracking Software
— STK

— Linux
 Predict
e Sattrack

— Windows

* Nova

e Websites

— Heavens-above.com
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AA236 Guidelines

e Design for worse case orbits
— We generally don’t know what orbit we’ll get

— Consider worse case for power, thermal, and
communication

— Rule out orbits?

* Possible delta-V capability

— Cold gas thrusters

— Electric propulsion

— Solar Sail

— What can we do with it?
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