EE406 – Digital signal Processing Lecture 1 – Introduction

Dr. Samir H. Abdul-Jauwad Electrical Engineering Department King Fahd University of Petroleum & Minerals

Course Book and References

Textbook:

Digital Signal Processing, Principles, Algorithms, and Applications John G. Proakis, Dimitirs G. Manolakis

References:

- A. V. Oppenheim and W. Schafer, *Digital-Time Signal Processing*, 4th Edition, Oxford Publishing, 1998.
- S. K. Mitra, *Digital-Time Signal Processing- A Computer-based Approach, 4*nd Edition, McGraw-Hill Oxford Publishing, 2009.
- R. A. Roberts and C. T. Mullis, *Digital Signal Processing*, Addison-Wesley, 1987.
- L. B. Jackson, *Digital Filters and Signal Processing,* 3rd Edition, KAP, 1995.

What is Signal?

- A flow of information.
- (mathematically represented as) a function of independent variables such as time (e.g. speech signal), position (e.g. image), etc.
- A common convention is to refer to the independent variable as time, although may in fact not.

Examples of Signals

- Speech: 1-Dimension signal as a function of time s(t);.
- Grey-scale image: 2-Dimension signal as a function of space i(x,y)
- Video: 3 x 3-Dimension signal as a function of space and time $\{r(x,y,t), g(x,y,t), b(x,y,t)\}$.

Where is DSP

DSP is Everywhere

Sound applications

- Compression, enhancement, special effects, synthesis, recognition, echo cancellation,...
- Cell Phones, MP3 Players, Movies, Dictation, Text-tospeech,...

Communication

- Modulation, coding, detection, equalization, echo cancellation,...
- Cell Phones, dial-up modem, DSL modem, Satellite Receiver,...

Automotive

 ABS, GPS, Active Noise Cancellation, Cruise Control, Parking,...

DSP Application

- Medical
 - Magnetic Resonance, Tomography, Electrocardiogram,...
- Military
 - Radar, Sonar, Space photographs, remote sensing,...
- Image and Video Applications
 - DVD, JPEG, Movie special effects, video conferencing,...
- Mechanical
 - Motor control, process control, oil and mineral prospecting,...

Types of Signals

- The independent variable may be either continuous or discrete
 - Continuous-time signals
 - Discrete-time signals are defined at discrete times and represented as sequences of numbers
- The signal amplitude may be either continuous or discrete
 - Analog signals: both time and amplitude are continuous
 - Digital signals: both are discrete
- Computers and other digital devices are restricted to discrete time
- Signal processing systems classification follows the same lines

Types of Signals

Goals of DSP

- Modifying and analyzing information with computers – so being measured as sequences of numbers.
- Representation, transformation and manipulation of signals and information they contain

Typical System Components

- Input lowpass filter to avoid aliasing
- Analog to digital converter (ADC)
- Computer or DSP processor
- Digital to analog converter (DAC)
- Output lowpass filter to avoid imaging

ADC and DAC

Pros and Cons of DSP

Pros

- Easy to duplicate
- Stable and robust: not varying with temperature, storage without deterioration
- Flexibility and upgrade: use a general computer or microprocessor

Cons

- Limitations of ADC and DAC
- High power consumption and complexity of a DSP implementation: unsuitable for simple, low-power applications
- Limited to signals with relatively low bandwidths

Applications of DSP

- Speech processing
 - Enhancement noise filtering
 - Coding, synthesis and recognition
- Image processing
 - Enhancement, coding, pattern recognition (e.g. OCR)
- Multimedia processing
 - Media transmission, digital TV, video conferencing
- Communications
- Biomedical engineering
- Navigation, radar, GPS
- Control, robotics, machine vision

Contribution in the Field

- Prior to 1950's: analog signal processing using electronic circuits or mechanical devices
- 1950's: computer simulation before analog implementation, thus cheap to try out
- 1965: Fast Fourier Transforms (FFTs) by Cooley and Tukey – make real time DSP possible
- 1980's: IC technology boosting DSP

Discrete Time Signals

Sequences of numbers

$$x = \{x[n]\}, \quad -\infty < n < \infty$$

where *n* is an integer

 Periodic sampling of an analog signal

$$x[n] = x_a(nT), \quad -\infty < n < \infty$$

where T is called the sampling period.

Sequence Operations

- The product and sum of two sequences x[n] and y[n]: sample-by-sample production and sum, respectively.
- Multiplication of a sequence x[n] by a number α : multiplication of each sample value by α.
- Delay or shift of a sequence x[n]

$$y[n] = x[n - n_0]$$

where *n* is an integer

Basic Sequences

Unit sample sequence (discrete-time impulse, impulse)

$$\mathcal{S}[n] = \begin{cases} 0, & n \neq 0, \\ 1, & n = 0, \end{cases}$$
Unit sample

 Any sequence can be represented as a sum of scaled, delayed impulses

$$x[n] = a_{-3}\delta[n+3] + a_{-2}\delta[n+2] + \dots + a_5\delta[n-5]$$

61-

More generally

$$x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$$

Unit Step Sequences

Defined as

$$u[n] = \begin{cases} 1, & n \ge 0, \\ 0, & n < 0, \end{cases}$$

Unit step

Related to the impulse by

$$u[n] = \delta[n] + \delta[n-1] + \delta[n-2] + \dots$$
 or
$$u[n] = \sum_{k=-\infty}^{\infty} u[k] \delta[n-k] = \sum_{k=0}^{\infty} \delta[n-k]$$

Conversely,

$$\mathcal{S}[n] = u[n] - u[n-1]$$

Exponential Sequences

- Extremely important in representing and analyzing LTI systems.
- Defined as

$$x[n] = A\alpha^n$$

- If A and α are real numbers, the sequence is real.
- If 0 < α < 1 and A is positive, the sequence values are positive and decrease with increasing n.
- If $-1 < \alpha < 0$, the sequence values alternate in sign, but again decrease in magnitude with increasing n.

Combining Basic Sequences

An exponential sequence that is zero for n<0

$$x[n] = \begin{cases} A\alpha^n, & n \ge 0, \\ 0, & n < 0 \end{cases}$$

$$x[n] = A\alpha^n u[n]$$

Sinusoidal Sequences

$$x[n] = A\cos(\omega_0 n + \phi),$$
 for all n with A and ϕ real constants.

The $A\alpha^n$ with complex α has real and imaginary parts that are exponentially weighted sinusoids.

If
$$\alpha = |\alpha| e^{j\omega_0}$$
 and $A = |A| e^{j\phi}$, then
$$x[n] = A\alpha^n = |A| e^{j\phi} |\alpha|^n e^{j\omega_0 n}$$

$$= |A| |\alpha|^n e^{j(\omega_0 n + \phi)}$$

$$= |A| |\alpha|^n \cos(\omega_0 n + \phi) + j |A| |\alpha|^n \sin(\omega_0 n + \phi)$$

Complex Exponential Sequences

When $|\alpha| = 1$,

$$x[n] = |A| e^{j(\omega_0 n + \phi)} = |A| \cos(\omega_0 n + \phi) + j |A| \sin(\omega_0 n + \phi)$$

- By analogy with the continuous-time case, the quantity ω_0 is called the frequency of the complex sinusoid or complex exponential and ϕ is call the phase.
- n is always an integer → differences between discrete-time and continuous-time

Frequency Domain

• Consider a frequency $(\omega_0 + 2\pi)$

$$x[n] = Ae^{j(\omega_0 + 2\pi)n} = Ae^{j\omega_0 n}e^{j2\pi n} = Ae^{j\omega_0 n}$$

■ More generally $(\omega_0 + 2\pi r)$, r being an integer,

$$x[n] = Ae^{j(\omega_0 + 2\pi r)n} = Ae^{j\omega_0 n}e^{j2\pi rn} = Ae^{j\omega_0 n}$$

Same for sinusoidal sequences

$$x[n] = A\cos[(\omega_0 + 2\pi r)n + \phi] = A\cos(\omega_0 n + \phi)$$

So, only consider frequencies in an interval of 2π such as

$$-\pi < \omega_0 \le \pi$$
 or $0 \le \omega_0 < 2\pi$

Frequency Domain

For a continuous-time sinusoidal signal

$$x(t) = A\cos(\Omega_0 t + \phi),$$

as Ω_0 increases, x(t) oscillates more and more rapidly

For the discrete-time sinusoidal signal

$$x[n] = A\cos(\omega_0 n + \phi),$$

as ω_0 increases from 0 towards π , x[n] oscillates more and more rapidly as ω_0 increases from π towards 2π , the oscillations become slower.

Periodicity

- In the continuous-time case, a sinusoidal signal and a complex exponential signal are both periodic.
- In the discrete-time case, a periodic sequence is defined as

$$x[n] = x[n+N],$$
 for all n

where the period N is necessarily an integer.

For sinusoid,

$$A\cos(\omega_0 n + \phi) = A\cos(\omega_0 n + \omega_0 N + \phi)$$

which requires that $\omega_0 N = 2\pi k$ or $N = 2\pi k/\omega_0$
where k is an integer.

Periodicity

Same for complex exponential sequence

$$e^{j\omega_0(n+N)} = e^{j\omega_0 n},$$

which is true only for $\omega_0 N = 2\pi k$

- So, complex exponential and sinusoidal sequences
 - \Box are not necessarily periodic in *n* with period $(2\pi/\omega_0)$
 - $\ \ \,$ and, depending on the value of $\ensuremath{\omega_0}$, may not be periodic at all.
- Consider

$$x_1[n] = \cos(\pi n/4)$$
, with a period of $N = 8$
 $x_2[n] = \cos(3\pi n/8)$, with a period of $N = 16$

Increasing frequency → increasing period!

Example

Discrete Time System

 A transformation or operator that maps input into output

$$y[n] = T\{x[n]\}$$

$$x[n] \longrightarrow T\{.\} \longrightarrow y[n]$$

- Examples:
 - The ideal delay system

$$y[n] - x[n - n_d], \qquad -\infty < n < \infty$$

A memoryless system

$$y[n] = (x[n])^2, \quad -\infty < n < \infty$$

Linear Systems

A system is linear if and only if

additivity property

$$T\{x_1[n]+x_2[n]\}=T\{x_1[n]\}+T\{x_2[n]\}=y_1[n]+y_2[n]$$
 and
$$T\{ax[n]\}=aT\{x[n]\}=ay[n] \qquad \text{scaling property}$$
 where a is an arbitrary constant

Combined into superposition

$$T\{ax_1[n] + bx_2[n]\} = aT\{x_1[n]\} + aT\{x_2[n]\} = ay_1[n] + ay_2[n]$$

Examples

Accumulator system – a linear system

$$y[n] = \sum_{k=-\infty}^{n} x[k]$$

$$y_1[n] = \sum_{k=-\infty}^{n} x_1[k], \qquad y_2[n] = \sum_{k=-\infty}^{n} x_2[k]$$

$$y_3[n] = \sum_{k=-\infty}^{n} (ax_1[k] + bx_2[k]) = ay_1[n] + by_2[n]$$

A nonlinear system

$$y[n] = \log_{10}(|x[n]|)$$

Consider $x_1[n] = 1$ and $x_2[n] = 10$

Time Invariant Systems

 For which a time shift or delay of the input sequence causes a corresponding shift in the output sequence.

$$x_1[n] = x[n-n_0] \Rightarrow y_1[n] = y[n-n_0]$$

Accumulator system

$$y[n - n_0] = \sum_{k = -\infty}^{n - n_0} x[k]$$

$$y_1[n] = \sum_{k = -\infty}^{n} x_1[k] = \sum_{k = -\infty}^{n} x[k - n_0]$$

$$= \sum_{k = -\infty}^{n - n_0} x[k_1] = y[n - n_0]$$

Causality

- The output sequence value at the index n=n₀ depends only on the input sequence values for n<=n₀.
- **Example** $y[n] = x[n-n_d], \quad -\infty < n < \infty$
 - □ Causal for n_d >=0
 - □ Noncausal for n_d<0</p>

Stability

- A system is stable in the BIBO sense if and only if every bounded input sequence produces a bounded output sequence.
- Example

$$y[n] = (x[n])^2, \qquad -\infty < n < \infty$$

stable

LTI System

- Important due to convenient representations and significant applications
- A linear system is completely characterised by its impulse response

$$y[n] = T\{x[n]\} = T\{\sum_{k=-\infty}^{\infty} x[k]\delta[n-k]\}$$

$$=\sum_{k=-\infty}^{\infty}x[k]T\{\mathcal{S}[n-k]\}=\sum_{k=-\infty}^{\infty}x[k]h_k[n]$$

- Time invariance $h_k[n] = h[n-k]$
- LTI $y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$ = x[n] * h[n] Convolution sum

Forming the Sequence

Computation of Convolution Sum

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

- Obtain the sequence h[n-k]
 - Reflecting h[k] about the origin to get h[-k]
 - Shifting the origin of the reflected sequence to k=n
- Multiply x[k] and h[n-k] for $-\infty < k < \infty$
- Sum the products to compute the output sample y[n]

Computation of Discrete Convolution

Example 2.13 pp.26 Impulse response

$$h[n] = u[n] - u[n - N]$$

$$= \begin{cases} 1, & 0 \le n \le N - 1, \\ 0, & \text{otherwise.} \end{cases}$$

input

$$x[n] = a^n u[n]$$

$$y[n] = \begin{cases} 0, & n < 0, \\ \frac{1 - a^{n+1}}{1 - a}, & 0 \le n \le N - 1, \\ a^{n-N+1}(\frac{1 - a^N}{1 - a}), & N - 1 < n. \end{cases}$$

Properties of LTI Systems

- Defined by discrete-time convolution
 - Commutative

$$x[n]*h[n] = h[n]*x[n]$$

Linear

$$x[n]*(h_1[n]+h_2[n]) = x[n]*h_1[n]+x[n]*h_2[n]$$

Cascade connection (Fig. 2.11 pp.29)

$$h[n] = h_1[n] * h_2[n]$$

Parallel connection (Fig. 2.12 pp.30)

$$h[n] = h_1[n] + h_2[n]$$

Properties of LTI System

- Defined by the impulse response
 - Stable

$$S = \sum_{k=-\infty}^{\infty} |h[k]| < \infty$$

Causality

$$h[n] = 0,$$
 $n < 0$

FIR Systems

Ideal delay

$$y[n] = x[n - n_d], -\infty < n < \infty$$

$$h[n] = \delta[n - n_d], \quad n_d$$
 a positive integer.

Forward difference

$$y[n] = x[n+1] - x[n]$$

$$\Rightarrow h[n] = \delta[n+1] - \delta[n]$$

Backward difference

$$y[n] = x[n] - x[n-1]$$

$$\rightarrow$$
 $h[n] = \delta[n] - \delta[n-1]$

- Finite-duration impulse response (FIR) system
 - The impulse response has only a finite number of nonzero samples.

IIR Systems

Accumulator

$$y[n] = \sum_{k=-\infty}^{n} x[k]$$

$$h[n] = \sum_{k=-\infty}^{n} \delta[k] = u[n]$$

- Infinite-duration impulse response (IIR) system
 - The impulse response is infinitive in duration.
- Stability $S = \sum_{n=-\infty}^{\infty} |h[n]|^{2} < \infty$
 - FIR systems always are stable, if each of h[n] values is finite in magnitude.
 - □ IIR systems can be stable, e.g. $h[n] = a^n u[n]$ with |a| < 1

$$S = \sum_{0}^{\infty} |a|^{n} = 1/(1-|a|) < \infty$$