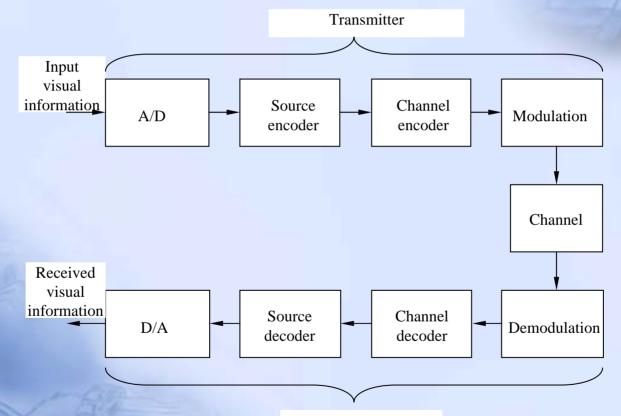
Chapter 2 Quantization

How much can we compress this image losslessly? How much can we compress this image with a loss?

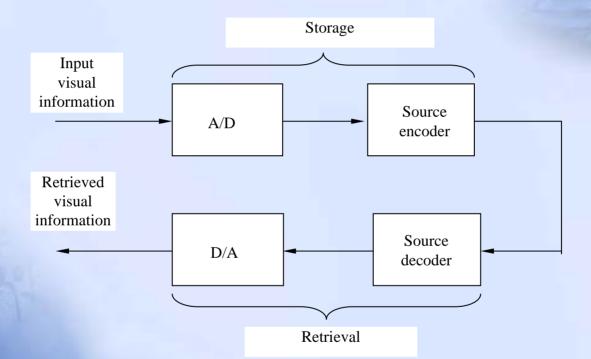
Outline

- Quantization and Source encoder
- Uniform quantization
 - Basics
 - Optimum Uniform quantizer

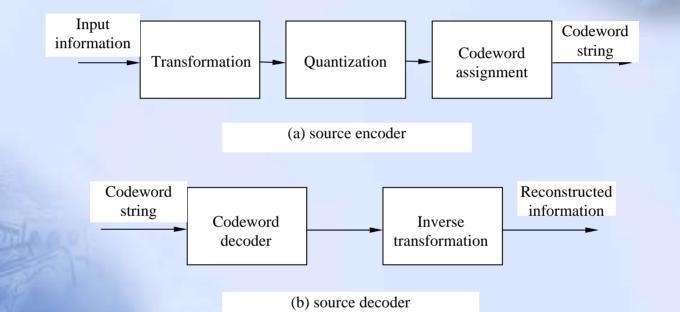


Receiver

Block diagram of a visual communication system



Block diagram of a visual storage system



Block diagram of a source encoder and decoder

Quantization:

- An irreversible process
- A source of information loss
- A critical stage in image and video compression
 - It has significant impact on
 - The distortion of reconstructed image and video
 - The bit rate of the compressed bitstream

Uniform Quantizer

- Simplest
- Most popular
- Conceptually of great importance

Uniform Quantizer -- Basics

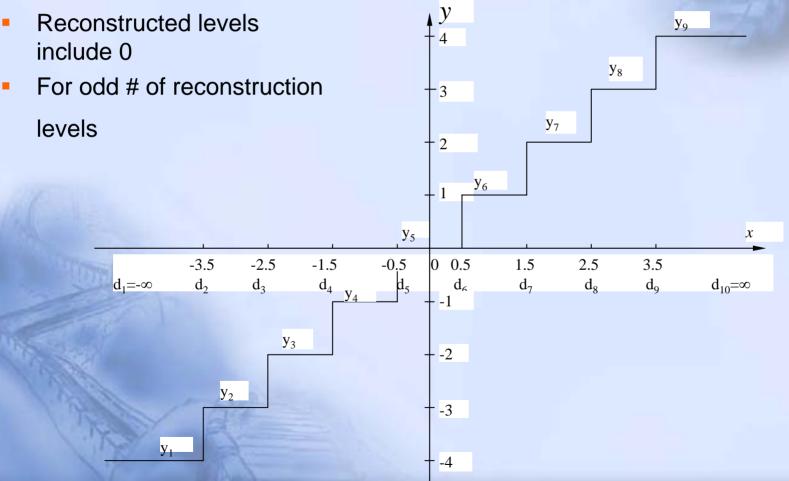
Definitions

- The input-output characteristic of the quantizer
 - Stair-case like
 - Non-linear

 $y_i = Q(x)$ if $x \in (d_i, d_{i+1})$,

Where y_i and Q(x) is the output of the quantizer with respect to the input x

Uniform Quantizer – Basics (midtread quantizer)



Uniform Quantizer -- Basics

Decision levels

 The end points of the intervals, denoted by d_i where i : index of intervals

Reconstruction level

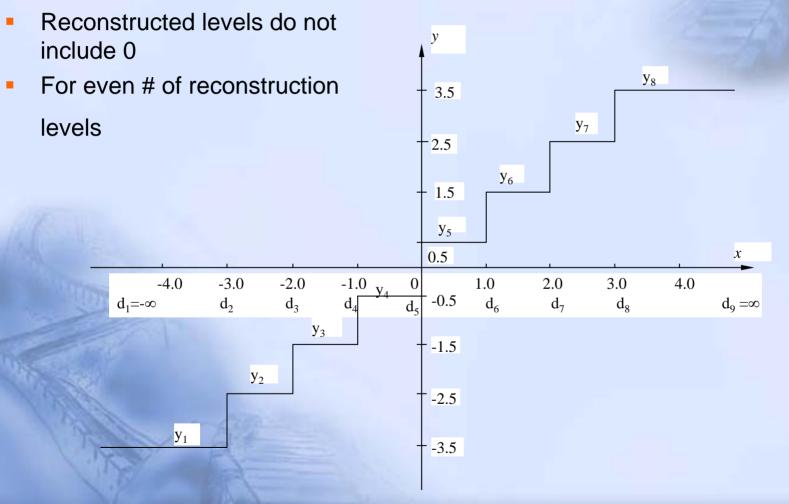
- The output of the quantization, denoted by y_i
- Step size of the quantizer
 - The length of the interval, denoted by Δ

Uniform Quantizer -- Basics

Two features of a uniform quantizer

- Except possibly the right-most and left-most intervals, all intervals along the x-axis are uniformly spaced
- Except possibly the outer intervals, the reconstruction levels of the quantizer are also uniformly spaced
- Furthermore, each inner reconstruction level is the arithmetic average of the two decision levels of the corresponding interval

Uniform Quantizer – Basics (midrise quantizer)



Uniform Quantizer -- Basics

- WLOG, assume both input-output characteristics of the midtread and midrise uniform quantizers are odd symmetric with respect to the vertical axis x=0
 - Subtraction of statistical mean of input x
 - Addition of statistical mean back after quantization
 - N: the total number of reconstruction levels of a quantizer

Quantization Distortion

 In terms of objective evaluation, we define quantization error e_q

 $e_q = x - Q(x),$

- Quantization error is often referred to as quantization noise
- Mean square quantization error MSE_a

$$MSE_{q} = \sum_{i=1}^{N} \int_{d_{i}}^{d_{i+1}} (x - Q(x))^{2} f_{X}(x) dx$$

Quantization Distortion

- *f_x(x)*: probability density function (*pdf*)
 - The outer decision levels may be - ∞ or ∞
 - When the pdf f_x(x) remains unchanged, fewer reconstruction levels (smaller N, coarser quantization) result in more distortion.
 - In general, the mean of e_q is not zero. It is zero when the input x has a uniform distribution. In this case, MSE_q is the variance of the quantization noise e_{q} .

Quantization Distortion

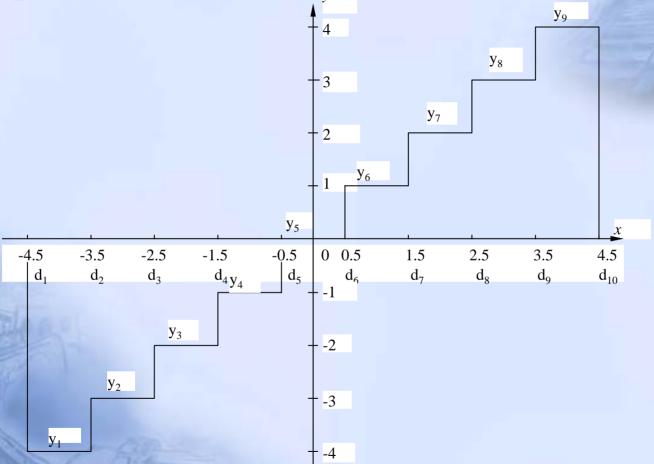


Quantizer Design

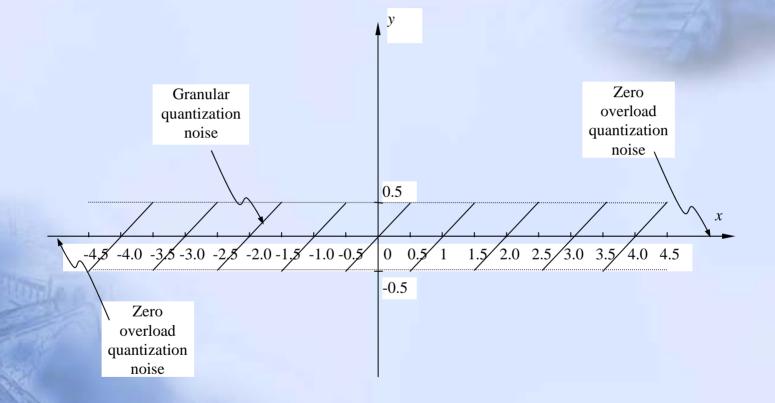
- The design of a quantizer (uniform/nonuniform)
 - Choosing the # of reconstruction levels, N
 - Selecting the values of decision levels and reconstruction levels
 - The design of a quantizer is equivalent to specifying its input-output characteristic
 - Optimum quantizer design
 - For a given probability density function of the input random variable, $f_X(x)$, design a quantizer such that the mean square quantization error, MSE_q , is minimized.

Quantizer Design

- For uniform quantizer design
 - N is usually given.
 - According to the two features of uniform quantizers
 - Only one parameter that needs to be decided: the step size Δ
 - As to the optimum uniform quantizer design, a different pdf leads to a different step size



Uniform quantizer with uniformly distributed input



Quantization distortion

The mean square quantization error

$$MSE_q = N \int_{d_1}^{a_2} (x - Q(x))^2 \frac{1}{N\Delta} dx$$
$$MSE_q = \frac{\Delta^2}{12}.$$

$$SNR_{ms} = 10\log_{10} \frac{{\sigma_x}^2}{{\sigma_q}^2} = 10\log_{10} N^2.$$

• If we assume $N = 2^n$, we then have $SNR_{ms} = 20\log_{10}2^n = 6.02n$ dB.

- The interpretation of the above result
 - If use natural binary code to code the reconstruction levels of a *uniform* quantizer with a *uniformly* distributed input source, then every increased bit in the coding brings out a 6.02 dB increase in the *SNR*_{ms}
 - Whenever the step size of the uniform quantizer decreases by a half, the MSE_q decreases four times

Quantization Effects

1 bit quantizer

3 bit quantizer

CS4670/7670 Digital Image Compression

2 bit quantizer

4 bit quantizer

- Conditions of optimum quantization
 - Derived by [Lloyd'57, 82; Max'60]
 - Necessary conditions, for a given pdf $f_X(x)$

$$x_{1} = -\infty \qquad x_{N+1} = +\infty$$

$$d_{i+1} \int_{(x-y_{i})f_{X}(x)dx = 0} \quad i = 1, 2, \dots, N$$

$$d_{i} = \frac{1}{2}(y_{i-1} + y_{i}) \qquad i = 2, \dots, N$$

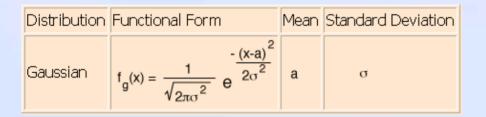
Centroid condition

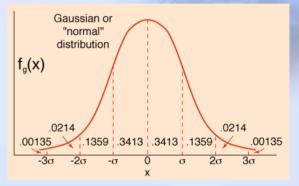
Nearest neighbor condition

- First condition: for an input *x* whose range is $-\infty < x < \infty$
- Second: each reconstruction level is the centroid of the area under the *pdf* and between the two adjacent decision levels
- Third: each decision level (except for the outer intervals) is the arithmetic average of the two neighboring reconstruction levels
- These conditions are *general* in the sense that there is no restriction imposed on the *pdf*.

- Optimum uniform quantizer with different input distributions
 - A uniform quantizer is optimum when the input has uniform distribution
 - Normally, if the *pdf* is not uniform, the optimum quantizer is not a uniform quantizer
 - Due to the simplicity of uniform quantization, however, it may sometimes be desirable to design an optimum *uniform* quantizer for an input with a *nonuniform* distribution.

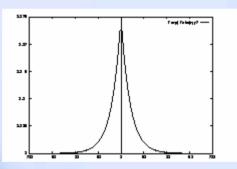
Some Typical Distributions





 $p(x) = rac{\lambda}{2} e^{-\lambda |x|}$

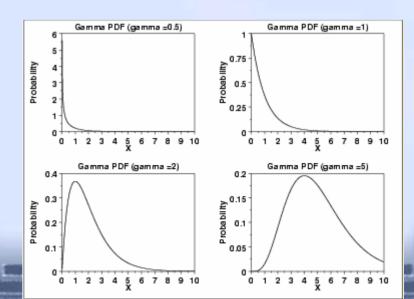
Laplacian



 $\Gamma(a)=\int_{0}^{\infty}t^{a-1}e^{-t}dt$

Gamma

$$f(x) = rac{(rac{x-\mu}{eta})^{\gamma-1}\exp{(-rac{x-\mu}{eta})}}{eta\Gamma(\gamma)} \qquad x \geq \mu; \gamma, eta > 0$$



 Optimal symmetric uniform quantizer for Gaussian, Laplacian and Gamma distribution (with zero mean and unit variance). [Max'60][Paez'72]. The numbers enclosed in rectangular are the

step sizes.

	Uniform			Gaussian			Laplacian			Gamma		
N	ġį.	Xi.	MSE	di.	yi.	MSE	di.	Ni.	MSE	di.	3ù	MSE
2	-1.000 0.000 1.000	-0.500 0.500	8.33 ×10 ⁻²	-1.596 0.000 1.596	-0.798 0.798	0.363	-1.414 0.000 1.414	-0.707 0.707	0.500	-1.154 0.000 1.154	-0.577 0.577	0.668
4	-1.000 -0.500 0.000 0.500 1.000	-0.750 -0.250 0.250 0.750	2.08 ×10 ⁻²	-1.991 -0.996 0.000 0.996 1.991	-1.494 -0.498 0.498 1.494	0.119	-2.174 -1.087 0.000 [1.087] 2.174	-1.631 -0.544 0.544 1.631	1.963 ×10 ⁻¹	-2.120 -1.060 0.000 1.060 2.120	-1.590 -0.530 0.500 1.590	0.320
8	-1.000 -0.750 -0.500 -0.250 0.000 [0.250] 0.500 0.750 1.000	-0.875 -0.625 -0.375 -0.125 0.125 0.375 0.625 0.875	5.21 ×10 ⁻³	-2.344 -1.758 -1.172 -0.586 0.000 0.586 1.172 1.758 2.344	-2.051 -1.465 -0.879 -0.293 0.293 0.879 1.465 2.051	3.74 ×10 ⁻²	-2.924 -2.193 -1.462 -0.731 0.000 0.731 1.462 2.193 2.924	-2.559 -1.828 -1.097 -0.366 0.366 1.097 1.828 2.559	7.17 ×10 ⁻²	-3.184 -2.388 -1.592 -0.796 0.000 0.796 1.592 2.388 3.184	-2.786 -1.990 -1.194 -0.398 0.398 1.194 1.990 2.786	0.132

- Under these circumstances, however, three equations are not a set of simultaneous equations one can hope to solve with any ease
- Numerical procedures were suggested for design of optimum uniform quantizers
 - E.g., Newton method
- Max derived uniform quantization step size for an input with a Gaussian distribution [Max '60]

- Paez and Glisson found step size for Laplacian and Gamma distributed input signals [Paez' 72]
- Zero mean: if the mean is not zero, only a shift in input is needed when applying these results
- Unit variance: if the standard deviation is not unit, the tabulated step size needs to be multiplied by the standard deviation.

Nonuniform Quantizer

- In general, an optimal quantizer is a nonuniform quantizer.
 - Depends on statistic (pdf) of input source
- Companding quantization
 - Using uniform quantizer to realize non-uniform quantization
 - Reading: Section 2.3.2
 - Adaptive quantization
 - Adapt to changing statistic of input source
 - Reading: Section 2.4
- HW #1: Ex. 2-2