Ibrahim Omar Habiballah
28 October 2008




State Estimators in Power Systems

o Estimators are used when unknown states (or
parameters) in a given mathematical model must be
determined from available measurements

* In power systems, there are more measurements than
are strictly needed to define the unknowns and the
problem is called over-determined



State Estimators in Power Systems

* This type of problem is variously referred to as state
estimation, parameter estimation, multivariate
regression, and curve fitting

* This presentation illustrates and explains five robust
state estimators for bad-data detections in power
systems
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Least Squares (LS) Estimator
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* The well known least squares estimate can be found by
. Mine'e
* Subject to

. Ax=Db+

|

* In other words, choose values for the unknown elements of
x and unknown measurement errors e that give a
minimum sum of squared errors.



Least Squares (LS) Estimator

e If the measurements have normally-distributed errors,
the method of Least Squares (LS), or more generally
Weighted Least Squares (WLS), provides an optimal
solution

* However, if some of the measurements are statistical
outliers (i.e. have unexpected very large errors) then
the LS estimate becomes unreliable



Least Absolute Values (LAV) Estimator

* An efficient algorithm for LAV estimation is via the
solution of the following linear program

° Min S(e+f,)

* Subject to: Ax-e+f=Db

. e>0,[>0

* where e and f are non-negative vectors of

unknown measurement errors



Least Absolute Values (LAV) Estimator

* By taking the absolute value (or modulus) of the
residual, the effect of outliers on the estimate is
reduced.

* A property of LAV estimates is that at least ‘'n’ of the
measurements will be fitted exactly (with zero
residuals)



Least Median of Squares (LMS) Estimator

* A characterisation of an LMS estimate is that it seeks a
regression that minimises the value of a tolerance ‘t’
whereby the majority of the measurements fall within

tolerance
o Min t
* Subject to: b-t-Mk < Ax < b+t+Mk
o k+k,+...+k, <K



Least Median of Squares (LMS) Estimator

* This estimator is a generalisation of the idea that the
median of a set of real values is a more robust estimate
than the mean

* For example, if we measure temperature using five
different thermometers and obtain the readings 12.7,
12.5, 19.8, 12.6, 12.8, the median (12.7) is a more robust
estimate than the mean (14.08)



Least Trimmed Squares (LTS) Estimator

* This estimator considers the sum of squared errors for
the (m-K) smallest residuals only

* Equivalently, the K largest residuals are rejected and
the remaining residuals are considered in a least
squares objective

. Min ele
* Subject to: b-Mk < Ax-e

. k+lk + @ +k =« K

<b+Mk
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* This estimator requires the user to pre-specify a
tolerance for each measurement and then seeks a
regression that minimises the number of
measurements unable to satisty their tolerance

leasurements Rejected (LMR)

o Min Sk

1

* Subject to: b-Mk -t < Ax <b+Mk+t
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|EEE 14-Bus Example

* the IEEE 14-bus DC example is used to illustrate and
evaluate the solutions of the above five estimators

» Six linear regression cases (case 1, case 2, case 3a, case
3b, case 3¢, and case 3d) have been considered

* Cases 1 and 2 are intended to be a straightforward
problem with low and high redundancy
measurements, respectively
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|EEE 14-Bus Example

* Case 3a introduces three independent bad-data to case
2: P1, P10, and P7-8

* Case 3b introduces two confirming bad-data: P1, P1-2
* Case 3c introduces two leverage bad-data: P2, P5

* Case 3d introduces a leverage bad-data P2 and a
confirming bad-data P1-2



e, ———

——

IEEE 14-Bus Example

e Table below shows the summation of the absolute of
the difference between the estimated and the actual
values of all cases.

I e M M I

—

Case 1 0.0920 0.1216 0.1076 0.1344 0.1077
Case 2 0.0905 0.0819 0.0889 0.0902 0.0813
Case 3a 1.6892 0.6613 0.0813 0.0593 0.0815
Case 3b 0.4176 0.3665 0.0743 0.0573 0.0564
Case 3c 0.5022 0.1181 0.6215 1.1125 0.3962

Case 3d 0.3590 0.0829 0.0878 0.4549 0.1568
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|EEE 14-Bus Example

e It can be observed that all the measurements can be
fitted reasonably well by all five estimators for the first
two cases

* However, better fitting has been achieved when the
redundancy of the system is high as in Case 2
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|EEE 14-Bus Example

*In Case 3a, the LTS, and LMR estimators have
successfully rejected the three independent bad-data
measurements

* The LTS estimator performed better than the LMR
estimator in terms of the estimated values

* The LAV and LMS estimators failed to reject the third
bad-data measurement P7-8
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|EEE 14-Bus Example

* In Case 3b, the LMS, LTS, and LMR estimators have all
successfully rejected the two confirming bad-data
measurements

* The LMR estimator performed better than the LMS
and LTS estimators
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|EEE 14-Bus Example

* In Case 3¢, the LAV estimator is the only estimator that
rejected successfully the two leverage bad-data
measurements

e The LS, LMS, LTS, and LMR estimators have failed to
reject the two leverage bad-data measurements
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|EEE 14-Bus Example

* In Case 3d, the LAV, LMS and LMR estimators have
rejected successfully the leverage and the confirming
bad-data measurements

* However, the LAV and LMS estimators have the best
estimated values



Conclusions

* It is difficult to draw a general conclusion on the
performance of a particular estimator

* They all depend on the type and number of bad-data
measurements



Thank You



