
Turbo Codes: Promises and Challenges 

Ali H. Mugaibel and Maan A. Kousa  

King Fahd University of Petroleum and Minerals  
PO Box 1721, Dhahran 31261, Saudi Arabia 

Abstract 
Channel coding is a powerful technique to get reliable communication over noisy channels. The performance of 
the coding system is bounded by Shannon limit. Lately, the proposal of parallel-concatenated convolutional code 
(PCCC), called turbo codes, has increased the interest in the coding area since these codes give most of the gain 
promised by the channel-coding theorem. Because turbo codes did not actually results from applying a pre 
existing theory, most of their outstanding features remain to be explained. The objective of this paper is to 
introduce turbo codes and the key elements to their superiority. Open problems and unresolved issues will be 
highlighted.

Introduction 
In channel coding, redundancy is introduced in the 
information sequence in order to increase its 
reliability. The channel coding theorem states that 
even at relatively low Eb/N0 reliable communication 
can still be maintained. However, the theorem tells 
us nothing about how to design the code that 
achieves such performance. All what it says is that 
the code should appear random. Unfortunately 
random codes are very difficult to decode. We need 
to have some structure in the code to make the 
decoding feasible. Researchers have been trying to 
resolve these two seemingly conflicting needs: 
structure and randomness. 

Lately in [4], the proposal of Parallel-Concatenated 
Convolutional Codes (PCCC), called turbo codes, 
has solved the dilemma of structure and 
randomness by allowing structure through 
concatenation and randomness through 
interleaving. The introduction of turbo codes has 
increased the interest in the coding area since these 
codes give most of the gain promised by the 
channel-coding theorem. 

The major promise of turbo codes is their 
astonishing performance of bit error rate (BER) at 
relatively low Eb/N0. To give an idea of how 
powerful turbo codes are, for a frame size of 
256×256=65536 bits we can achieve a BER=10-5 
over AWGN channel at only Eb/N0=0.7dB, which is 
very close to Shannon limit [4]. For a Rayleigh 
fading channel a BER=10-5 can be achieved at 

Eb/N0=4.3dB which represents a gain of 2.3dB as 
compared to classical convolutional codes with 
similar complexity [14]. 

When turbo code was first introduced it carried 
with it many promises. Limited understanding of 
the code ingredients made the task of bringing these 
promises into practical real applications sort of a 
challenge. The major challenge with turbo code is 
the inherent delay associated with the interleaver 
and the iterative decoding algorithm. Puncturing 
can be introduced to increase the rate and hence 
allow more applications to suit turbo codes.   

In the following sections the structure of both the 
encoder and the decoder are explained. The effects 
of interleaving and puncturing on the code 
performance are discussed. The paper concludes 
with a summary and suggestions for further 
research.  

Turbo encoder 
In a simplified turbo code, there are two 
convolutional encoders in parallel. The information 
bits are scrambled before entering the second 
encoder. The codeword in a turbo code consists of 
the input bits - i.e. the code is systematic - followed 
by the parity check bits from the first encoder and 
then the parity bits from the second encoder, as 
depicted in Figure 1.  

The simplified turbo code block diagram in Figure1 
shows only two branches. In general, one can have 
multiple turbo encoders with more than two 

PAD 

Interleaver  

Enc 1 

Enc 2 

X0 

X1 

X2 

Information 
Source 

Figure 1: Simplified Turbo Encoder 

Puncturing & 
Parallel/Serial 

MUX 

to the 
channel 



branches. The convolutional code at every branch is 
called the constituent code (CC). The CCs can have 
similar or different generator functions. We will 
concentrate on the usual configuration with two 
branches having the same CC. A PAD is shown in 
the figure to append the proper sequence of bits to 
terminate all the encoders to the all-zero state. This 
is because a convolutional code may be used to 
generate a block code if we use beginning and tail 
bits. If we have one encoder then the required tail is 
a sequence of zeros with length equal to the 
memory order m. The problem of terminating both 
encoders simultaneously seems to be difficult 
because of the interleaver. However, it is still 
possible to do with m tail bits only [6].  

In general we can have another interleaver before 
the first encoder but usually it is replaced with a 
delay line to account for the interleaver delay and 
keep the branches working simultaneously.  

Puncturing can be introduced to increase the rate of 
the convolutional code beyond that resulting from 
the basic structure of the encoder. Separate sections 
are devoted for interleaving and puncturing.    

Some codes are called recursive since the state of 
the internal shift register depends on the past 
outputs. Figure 2 illustrates a non-recursive non-
systematic convolutional code with its 

corresponding recursive systematic code.  X0 and 
X1 are the check bits. Note that for the systematic 
convolutional encoder, one of the outputs, X0, is 
exactly the input sequence. 

In turbo codes Recursive Systematic Convolutional 
(RSC) codes are proved to perform better than the 
non-recursive ones [4][3].  An RSC encoder can be 
obtained from an non-systematic non-recursive 
encoder by setting one of the outputs equal to the 
input (if we have one input) and using a feed back.  
The trellis and the free distance (dfree) also will be 
the same for both codes [4]. Of course, the output 
sequence does not correspond to the same input in 
the two codes because the two generator functions 
are not the same.  

Turbo decoder 
The decoder works in an iterative way. Figure 3 
shows a block diagram of a turbo decoder.   The 
iteration stage is shown with doted lines to 
differentiate it from the initialization stage. Only 
one loop is performed at a time. In practice the 
number of iterations does not exceed 18, and in 
many cases 6 iterations can provide satisfactory 
performance [4]. Actually, the term turbo codes is 
given for this iterative decoder scheme with 
reference to the turbo engine principle. The first 
decoder will decode the sequence and then pass the 
hard decision together with a reliability estimate of 
this decision to the next decoder. Now, the second 
decoder will have extra information for the 
decoding; a priori value together with the sequence. 
The interleaver in-between is responsible for 
making the two decisions uncorrelated and the 
channel between the two decoders will seem to be 
memoryless due to interleaving.  

The exact procedure in what information to pass to 
the next decoder or next iteration stage is a subject 
of research. In the next section, we describe a 
widely accepted decoding algorithm, which is the 
modified soft output Viterbi algorithm.   

Soft Output Viterbi Algorithm  (SOVA) 
Algorithms used in decoding convolutional codes 
can be modified to be used in decoding turbo codes. 
In the original paper on turbo codes [4], a modified 
BAHL et al algorithm was proposed for the 
decoding stage. This algorithm is based on 
Maximum A-posteriori Probability (MAP). The 
problem with this algorithm is the inherent 
complexity and time delay. MAP algorithm was 
originally developed to minimize the bit-error 
probability instead of the sequence error 
probability. The algorithm, although optimal, seems 
less attractive due to the increased complexity. 

Viterbi algorithm is an optimal decoding method 
that minimizes the probability of sequence error for 
convolutional codes. A modified version of Viterbi 

X0 

X1 

D D D D 

+

+
(a) 

Input 

D D D D + 

+ 
(b) 

X0 

X1 

Input 

Figure 2: (a) Classical Non-Recursive Non-          
Systematic Code  

  (b) Recursive Systematic Code 



algorithm, called SOVA (Soft Output Viterbi 
Algorithm), which uses soft outputs is introduced in 
[13][14]. SOVA has only twice the complexity of 
Viterbi algorithm.  The new algorithm will make it 
possible to integrate both the encoder and the 
decoder in a single silicon chip with unmatched 
performance at the present time [4]. 

The key point in decoding is that every decoder will 
pass a reliability estimate together with the hard 
decision. Specifically, the decoder shall deliver for 
each symbol an estimate of the probability, p`, that 
this symbol has been incorrectly detected, that is, 

p`= Prob{estimated symbol ≠sent symbol | received 
symbol } 

The practical performance of turbo codes resides in 
the availability of a simple sub-optimal iterative 
decoding. Iterative SOVA output approaches 
maximum likelihood (ML) decoding performance 
bound by increasing the number of iterations [2]. 
However, the question of convergence is still 
waiting for a concrete answer.  

The a posteriori probability of each bit or the 
reliability factor will produce the soft output 
required. If in the trellis we would like to decide on 
the survivor, we can take the path metric as an 
indication of the possibility of making an error. 
Both paths will be stored and information will be 
passed to the second decoder which is going to 
perform separate decoding and decide upon the 
survivor. The final decision will depend on the two 
decisions and will be passed for further iterations if 
needed. The exact algorithm together with an 
estimate of the storage and computation 
requirements are given in [13].  

In [17], it was shown that SOVA as introduced 
above suffers from two degradations. First, the 
reliability information of the decoder output is too 
optimistic especially for bad channels. Secondly, 
the assumption that the decoders’ decisions are 
uncorrelated is not completely true. An improved 
decoding with SOVA, called Normalized SOVA, 

that provides remedy to these two problems was 
introduced by [17]. 

Decoding details of turbo codes are out of the scope 
of this paper.   An interested reader is referred to 
[13] [14] and [17] for further details. 

Performance evaluation 
Lots of research were carried out to find bounds on 
the performance on turbo codes [2][3][10], but the 
inherent complexity of the code prevented general 
and tight results. Simulation is the usual mean for 
judging the performance of turbo codes. However, 
simulation requires extensive computation 
especially at high values of signal to noise ratios 
since the probability of error will be very low. 

Most of the theoretical bounds on turbo codes are 
based on the union bound, which can be applied to 
any linear code. To analyze the turbo encoder the 
effect of the decoder is de-coupled by assuming the 
availability of an optimum or near optimum 
decoder. The decision on the encoder is based on 
the free distance and the weight distribution of the 
code. The free distance (dfree) is defined to be the 
minimum Hamming weight of all possible 
codewords. The distribution of the codewords 
based on the Hamming weight will determine the 
code performance. The turbo encoder is usually 
represented by its transfer function or by a table or 
tree describing the distance spectrum. Both the 
transfer function and the distance spectrum are very 
helpful in developing a performance bound for a 
given code.  

Interleaving 
An interleaver is a device that rearranges the 
ordering of sequence of symbols in a deterministic 
manner. Associated with the interleaver is a 
deinterleaver that applies the inverse permutation 
to restore the original sequence [9].  

According to [1] the most critical part in the design 
of a turbo code is the interleaver. The two main 
issues in the interleaver design are the interleaver 
size and the interleaver map. The size of the 

Estimated 
Sequence 

Decoder 1 Decoder 2 Interleaver 1 

DEMUX
/ 

INSERT 

  

Received 
Sequence 

(Interleaver 1)-1 

(Interleaver 1)-1 

Figure 3: Block Diagram of a Turbo Decoder 



interleaver plays an important rule in the trade off 
between performance and time (delay) since both of 
them are directly proportional to the size.  On the 
other hand, the map of the interleaver plays an 
important role in setting the code performance. 

Conventionally, interleaving is used to spread out 
the errors occurring in burst. For turbo codes, the 
interleaver has more functions. Interleaving is used 
to feed the encoders with permutations so that the 
generated redundancy sequences can be assumed 
independent. The validity of the assumption that the 
generated redundancy sequences are independent is 
a function of the particular interleaver used. This 
will exclude a number of interleavers, which 
generate regular sequences such as cyclic shifts [1].  

Another key role of the interleaver is to shape the 
weight distribution of the code, which ultimately 
controls its performance. This is so because the 
interleaver will decide which word of the second 
encoder will be concatenated with the current word 
of the first encoder, and hence what weight the 
complete codeword will have [1]. So the aim of the 
designer is to produce (by manipulating the weights 
of the second redundancy part through interleaver 
mapping) whole codewords with the overall 
weights as large as possible [18]. Turbo codes, 
unlike convolutional codes, make the distribution of 
the weight more important than the minimum 
distance [2]. 

Another issue that is worth considering in the 
design of the interleaver is the termination of the 
trellis of both convolutional encoders. By properly 
designing the map of the interleaver, it is possible 
to force the two encoders to the all-zero state with 
only m bits (where m is the memory length of the 
convolutional encoder assuming the same 
convolutional code is used in both encoders). To 
achieve that a condition on the interleaver is 
proposed by [6] and demonstrated by  [20]. 

There have been many attempts to characterize the 
effects of the interleaver on the performance of 
turbo codes. To overcome the difficulty of 
representing the interleaver map or the difficulty of 
enumerating all the permutations the authors in [2] 
introduced an abstract interleaver called uniform 
interleaver, defined as follows: 

A uniform interleaver of length k is a probabilistic 
device, which maps a given input word of weight w 
into all distinct k

wC permutations of it with equal 

probability k
wC/1 . 

The uniform interleaver can not be used in practice 
since one is confronted with deterministic 
interleavers. However, it has been shown that for 
each value of signal to noise ratio, the performance 
obtained with the uniform interleaver is achievable 
by at least one deterministic interleaver [2].  

The concept of uniform interleaver was further used 
in the design and evaluation of turbo codes.  In 
[Per96] an asymptotic bound on the performance 
was given as a function of the interleaver length 
and some other code parameters.  

 In [2] it was shown through a bound that random 
interleavers offer performance close to the average 
ones, independent, to a large extent, of the 
particular interleaver used. It was also shown that 
the beneficial effect of increasing the interleaver 
length tends to decrease at high k (interleaver 
length).  Actually the effect of interleaver length 
should be considered in conjunction with the 
memory span of the CCs.   

Dolinar and Divsalar [11] compared the difference 
in performance between random and nonrandom 
interleavers. The authors discussed a partial 
separation of the problem of picking good 
permutations and that of picking good component 
codes.  

Researchers are still working to develop design 
guidelines and to relate the interleaver parameters 
to the code performance.  

Puncturing 
Puncturing is the process of deleting some bits from 
the codeword according to a puncturing matrix. The 
puncturing matrix (P) consists of zeros and ones 
where the zero represents an omitted bit and the one 
represents an emitted bit. It is usually used to 
increase the rate of a given code. Puncturing can be 
applied to both block and convolutional codes. An 
example of the puncturing matrix to go from rate 

1/2 to rate 2/3 is given by P=
⎥
⎦

⎤
⎢
⎣

⎡
01
11 . This matrix 

implies that the first bit is always transmitted while 
every other second bit is omitted.  

For turbo codes, the same decoder may serve for 
various coding rates by means of puncturing, 
allowing the same silicon product to be used in 
different applications [5].  When the redundant 
information of a given encoder is not transmitted, 
the corresponding decoder input is set to zero. Of 
course, the decoder needs to know the current 
puncturing table.  This function is performed by the 
DEMUX/INSERTION block in the turbo decoder 
(See Figure 2). The DEMUX will demultiplex the 
stream between the decoders and the INSERTION 
will insert an analog zero if the corresponding bit is 
omitted. When the code is punctured, the branch 
metric corresponding to the punctured bits need not 
be computed. 

Determining the best puncturing pattern for turbo 
codes is still an open problem. [5] suggests that 
systematic bits should not be punctured (Berrous 
puncturing). The paper demonstrated, by 



simulation, that it is always better to avoid 
puncturing systematic bits. However, in [15] a new 
puncturing is suggested, named UKL puncturing. It 
concludes that nonsystematic version of the 
designed punctured code is advantageous at high 
values of Eb/N0 which are related to low BERs. 
This result was tested over AWGN and fully 
interleaved flat Rayleigh fading channels. 

One disadvantage of punctured codes is that error 
events at high rates and higher distances can be 
quite large. The decision depth of punctured codes 
is generally longer. This problem is not severe since 
in most applications data frames are transmitted 
with sync words and proper termination of short 
frames. [12] 

Puncturing is a trade off between rate and 
performance, but, fortunately, punctured codes 
come with 0.1 or 0.2 dB of the optimum code (as 
reported for the convolutional codes)[19]. 
Convolutional codes and their punctured 
alternatives together with their difference in 
performance are tabulated [9].  

It is suggested that using unequal puncturing 
(puncturing one encoder outputs different than the 
other) improves the performance [16]. In [8] Caire 
shows that the performance is not achieved by 
considering puncturing alone but the interleaver 
should be designed jointly. In [7], Caire suggested 
to define the puncturing pattern on the interleaver 
map. Moreover, adaptive puncturing can be used 
depending on the channel noise. 

Conclusion 
Approaching the excellent performance promised 
by turbo codes requires careful understanding of the 
code ingredients. The effects of the code parameters 
on the performance need further investigation. 
Analytical method for accurately predicting the 
performance of turbo codes in terms of BER is a 
topic for further research. Proper understanding of 
the code will help in beating the challenge of 
making the code applicable for real time 
applications. 

Reference 
[1] Battail, Gérard, "A conceptual framework for 

understanding turbo codes," IEEE Journal on Selected 
Areas in Communications, vol. 16, No. 2, February 
1998, pp. 245-254. 

[2] Benedetto, Sergio and Montorsi., Guido “Unveiling 
turbo-codes: some results on parallel concatenated 
coding schemes,” IEEE Transactions on Information 
Theory, vol. 42, No. 2, March 1996, pp. 409-428.  

[3] Benedetto, Sergio and Montorsi., Guido “Design of 
parallel concatenated convolutional codes,” IEEE 
Transactions on Communications, vol. 44, No. 5, May 
1996, pp. 591-600. 

[4] Berrou, C., Glavieux, A. and Thitimajhima, P., “Near 
Shannon limit error correcting coding and decoding : 
turbo-codes,” Proc. Of ICC ‘93, Geneva, May 1993, pp. 
1064-1070. 

[5] Berrou, C. and Glavieux, A.: "Near optimum error 
correcting coding and decoding: Turbo-Codes", IEEE 
Transactions on Communications, 1996, vol. 44, pp. 
1261-1271. 

[6] Blackert, W. J., Hall, E. K., and Wilson, S. G., "Turbo 
code termination and interleaver conditions," 
Electronic Letters, vol.31, No.24, November 1995, pp. 
2082-2084. 

 [7] Caire, G. and Lencher, G. ,"Turbo codes with unequal 
error protection" , Electronic Letters, Mar. 1996, vol. 
32, No. 7, pp. 629-631. 

[8] G. Caire and E Biglieri, "Parallel concatenated codes 
with unequal error protection," IEEE Transactions on 
Communications , vol. 46, No. 5, May 1998, pp. 565-
567. 

[9]  Clark, G. and Cain, J., “Error-Correction Coding for 
Digital Communications” New York: Plenum 
Publishing Corporation 1988 . 

 [10] Divsalar, D. Dolinar, S. and Pollara, F., "Transfer 
function bounds on the performance of turbo codes" , 
TDA Progress Report 42-122,  Aug. 1995, pp. 44-55. 

[11] Dolinar, S. and Divsalar, D. "Weight distribution for 
turbo codes using random and nonrandom 
permutations," TDA Progress Report 42-122 , Aug. 
1995, pp. 56-65. 

[12]  Hagenauer, J. , "Rate compatible punctured 
convolutional codes (RCPC-codes) and their 
application," IEEE Transactions on Communications, 
Apr. 1988, vol. 36, pp. 389-400. 

[13] Hagenauer, J., Hoeher, P., “A Viterbi algorithm with 
soft-decision outputs and its applications,” 
Proceedings of GLOBECOM ‘89, Dallas, Texas, Nov. 
1989, pp. 47.11-47.17.   

[14]  Hagenauer, J.  and Papke, L., “Decoding turbo codes 
with the soft-output Viterbi algorithm (SOVA),” in 
Proceedings of International Symposium On 
Information Theory (Trondheim, Norway, June 1994), 
p. 164. 

[15] Jung, P. and Plechinger,J. "Performance of rate 
compatible punctured Turbo-codes for mobile radio 
applications," Electronics Lettes, 1997,  vol. 33, 
No.25, pp. 2102-2103. 

 [16] Mohammadi, A. H. and Khandani, A. K., "Unequal 
error protection on the turbo-encoder output bits", 
Proceedings of ICC'97 - International Conference on 
Communications, vol. 2 , 1997, pp. 730-734. 

 [17] Papke, L. and Robertson, P., “Improved decoding 
with the SOVA in a parallel concatenated (turbo code) 
scheme,” IEEE Int. Conference on Communications  
ICC ’96, 1996, pp. 102-106. 

[18] Svirid, Yuri V., "Weight distribution of  turbo-codes," 
Proceedings of 1995 International Symposium on 
Iinformation Theory, 17-22 Sep. 1995  p.38. 

 [19] Sweeney, P. ,“ Error Control Coding : an Introduction,” 
UK: Prentice Hall International Ltd. 1991.  

 [20] Valenti, Matthew C., “An introduction to turbo 
codes,” Not published. 


