Main Ideas Covered in EE205: Circuit II

Dr. Ali Muqaibel

CH11: 3-ϕ circuits.

Main ideas:

- Y-Y connected circuit
- Y-Δ connected circuit & +, - sequence
- Parallel loads
- Power calculation
- Power measurement & wattmeter

CH8: Natural and step responses of RLC circuits.

Main ideas:

- Find $v(t)$ & $i(t)$. (do not forget about V_f & I_f)
- Series & parallel circuit (the main different is α).
- Two stage Amplifier.

Handout: State equations and computer aided circuit analysis.

Main ideas:

- Write the matrix state equation.
- Given then matrix equation & by using Δt find v_L & i_c.

Handout: Resonant circuits & Circuit analysis in s-domain.

Main ideas:

- Find the resonance frequency
- Quality factor. (Series RLC, Parallel RLC, Practical tank circuit, General form)
- Complex s-domain.
- Poles & zeros
- The type of resonance (over–under-critical damped)
CH6&9: Mutual inductance and transformers:

Main ideas:

- Physics (λ, ϕ...).
- Linear transformers (Z_{11}, Z_{22}, Z_{r} ...).
- Dot convention and energy storage.
- Ideal transformer (the relation between V & I and sign).
- Impedance Matching.

CH14 & Appendix E: Filters and Bode plot:

Main ideas:

- (BW, ω_o, ω_{c1}, ω_{c2}, φ, selectivity).
- Transfer and sketch magnitude & phase.
- Filter Types.
- Bode Diagram

CH18: Two-port networks:

Main ideas:

- Find the z, y and other parameters parameter.
- Find g, h, a, b (no need to memorize equations)
- Derive the relation between different parameters and/or Use tables 18.1 & 18.2 to convert from one parameter to another parameter.
- Perform circuit analysis in the presence of a two port network.

To do well in Circuits you need to practice. Understanding the concepts is not sufficient.