Problem 1:

For the circuit shown in the figure

\[R=10, \quad L=2 \text{ H}, \quad \text{and} \quad C=\frac{1}{50} \text{ F} \]

1) Find the input impedance \(Z_{in}(j\omega) \) (3 points)

2) Find the input admittance \(Y_{in}(j\omega) \) (4 points)

3) Find the resonance frequency. (3 points)

4) Find the quality factor of the circuit. (2 bonus)

\(\text{(Hint: assume that you have a voltage test source and then use source transformation)} \)

Simplify \(Z_{in}(j\omega) \) & \(Y_{in}(j\omega) \) as real +j imaginary

Problem 2:

A 10 Ω resistor and a 2 H inductor are connected in parallel and \(\omega=50 \text{ rad/s} \).

(a) What is the \(Q \) of this parallel connection?

(b) What series RL connection has the same impedance as the parallel connection at the given frequency?

(c) What is the \(Q \) of this series connection?

(d) A circuit has the following transfer function, \(H(j\omega) = \frac{V_{out}}{V_{input}} = \frac{1}{2 + j\omega} \), find the cutoff frequency for this circuit.

Problem 3:

For the circuit shown in the figure, the resonance frequency is \(6/\sqrt{10} \text{ rad/s} \), to find the quality factor we have applied a test current source of value \(1 Angle 0^\circ \text{ A} \), and we have found that the current through the 4H inductor is \(I_2 = 2 Angle 0^\circ \text{ A} \), the voltage across the capacitor can be found to be \(6\sqrt{10} Angle -90^\circ \text{ V} \). Find the quality factor

\(\text{Hint: continue to find the current in the other inductors.} \)

\[\cos^2 \theta = \frac{1}{2}(1 + \cos 2\theta) \]

Good Luck, Dr. Ali Muqaibel