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Abstract:  This paper extends the capabilities of the harmonic potential field
approach to planning to cover the situation where the workspace of a robot
cannot be segmented into geometrical subregions each having an attribute of its
own.  Instead the suggested planner accepts a holistic, task-centered,
probabilistic descriptor of the workspace as an input. This descriptor is
processed along with a goal point to yield the navigation policy used to direct
motion. The extension is based on the physical analogy with an electric current
flowing in a nonhomogeneous conducting medium. Proofs of the ability of the
modified approach to avoid zero-probability (definite threat) regions and
converge to the goal are  provided. The capabilities of the suggested planner are
demonstrated using simulation. 

     
I. Introduction:

Designing an autonomous agent that can, with a reasonable
chance of success, engage a task in a realistic environment is an
involved multi-disciplinary endeavor [1]. While special
attention has to be paid to the propulsion, data acquisition and
communication systems used by the agent, the biggest challenge
seems to be designing a proper planning module  that converts
these systems into one goal-oriented unit. There is a long list of
conditions a planner must satisfy in order to generate a sequence
of action instructions which the actuators of motion may
execute to successfully complete a  task. However, the
conditions on handling and representing mission data seem to be
the most stringent [2,33]. To begin with, the  format of the
signal encoding the information acquired about the agent’s
environment has to be carefully selected. Two core conditions
on a representation are: compatibility of the representation with
the manner in which the data is being processed and action is
being generated.  This condition minimizes the chance of inter-
module conflict, hence reduces the probability of unexpected
behavior. It also reduces the delay in responding to the contents
of the environment. The other condition has to do with the
updatability of the representation. No matter how accurate the
representation an agent has prior to executing a task, it will have
to change during the execution phase depending on the feedback
received from the agent’s sensors. The validity of the existing
portion of the representation must not be conditioned on the
future data that could be received. In other words,  the
presentation must be noncommittal in order for the size of the
effort needed to incorporate a newly acquired piece of
information to be commensurate with the size of the newly
available information. This allows for the incremental
construction of a representation. Besides these two
requirements, it is desirable  that the growth in the size of a
representation be linear (or a low order polynomial) in the size
of information (assuming it is possible to construct an
information measure). It is also useful for a representation to be
able to incorporate the ambiguity caused by the aging of
information during the period where no sensory data is available
to update the agent’s belief of its environment. The ability to
incorporate human-centered, intuitive, expert knowledge in a
representation is also important. 

Most planners assume divisible environments that may be
partitioned into subsets of homogeneous attributes. The most
common scheme is to have a binary partition of admissible sets
and  forbidden ones. These regions are usually described  using
geometric  structures like circles [3], occupancy maps, Voronoi
partitions [4], grids and graphs [5], and trees [6].  This crisp
representation is then fed to the planner along with the goal (or
task)  and constraints on behavior in order to generate the action
instructions needed by the agent being utilized to perform the
task.  There are situations where the environment in which an
agent  is operating is not divisible. For example, a plane flying
through turbulent atmosphere [7] experiences a degree of
turbulence where  clear space is diffused into turbulent space
with no sharp boundaries separating the two. Also in the case of
mobile robots operating in rough terrains [8], it is not wise to
construct a binary description of  the environment using
admissible and forbidden regions. Instead, the description
should be based on the degree of difficulty of negotiating the
terrain. Many other examples similar to those can be constructed
like passing through hostile space where the environment is
better described by the degree of possible harm. 
  

An alternative to the geometric  approach is to use a soft
representation that consists of a field reflecting, at each point in
the environment,  the ability of achieving the task. Describing
an environment by a task-centered, probability field can address
almost all the above requirements. For example, aging of
information may be incorporated by using a simple blurring
operator. Exact knowledge of the location of a one-dimensional
point object may be represented as a probability distribution
function (PDF) with an impulse function (figure-1). Convolving
this exact spatial knowledge with the proper blurring operator
produces another representation with the  ambiguity factored-in.
Repeatedly applying the blurring operator  leads to a uniform
PDF representing the maximum state of ambiguity (i.e. the
object could be anywhere). Probabilistic representations are
ideal for encoding the information in non-divisible
environments. For example the speed of wind in a storm (figure-
2) may be easily converted into a PDF representing the
suitability of space for navigation.
  

As for the amount of storage needed for a faithful reproduction
of the representation, it is well-known from Shannon sampling
theorem [9] that there is no need to store the value of the PDF
at each point in space. Depending on the bandwidth (BW) of the
PDF (a BW may in many cases be used as a measure of the
richness of a signal in information) only sparse information
about the pulse-like interpolating kernel need to be stored to
exactly reproduce the PDF. Moreover, a change of information
in one region of the PDF will not affect the information in the
other regions.  This allows for the representation to be, with
reasonable effort, dynamically updated. 
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Figure-1: Probabilistic descriptor easily admits aging of information. 

 

Figure-2: Speed of wind may be used to construct a spatial probabilistic
descriptor. 

Soft probabilistic representations were adopted by many
researchers in robotics. For example in [10,11] probabilistic
representations are used for path planning in the presence of
sensory data ambiguity. This representation may be fed to a
reinforcement learning-based, or an optimal control-based stage
to generate the navigation policy.It ought to be noticed that a
representation generated in this manner reflects the structure of
the underlaying physical environment (figure-3). If the
probabilistic field is to accommodate all the above mentioned
properties, the chances are that the resulting PDF will not reflect
this structure. This in turn will adversely affect the performance
of the navigation policy generator. 

Fuzzy logic techniques [12] are used to derive navigation
actions for robots. They use soft probabilistic representations in
the process. While these techniques have proven their
practicality, they are not provably correct (heuristics). They
heavily rely on an external user’s  understanding of the nature

Figure-3: Ambiguity function reflects the crisp geometry of the environment.

of the environment being tackled in order to generate the fuzzy
rule-book needed for the navigator to function. This may
seriously jeprodize the autonomy of the robot. Qualitative
methods for dealing with uncertainty may also be found in [13].

  This work suggests a method for generating the navigation
policy for a robot. The method accepts as an input the goal point
and a task-centered, probabilistic description of the
environment. The method is efficient, provably-correct and

assumes no structure what so ever on the PDF used to represent
the environment. The method is derived by extending the
capabilities of the harmonic potential field (HPF) approach to
motion planing [14,15,16] so that it would be possible to feed
the environmental data to the planner  in the form of a PDF
instead of a geometric form.  Previous attempts to constructing
a probabilistic HPF planner focused on using the HPF as  a
probability measure describing the danger of collision with
obstacles in the environment. This approach  strips the HPF
from its  well justified role as a navigation policy generator  and
reduces it to a merely descriptive tool that is an input to an
action generation stage of some kind [17,18]. 

This paper is organized as follows: in section II, the suggested
planner is presented. The ability of the planner to avoid zero-
probability regions and converge to the target are proven in
section III. Simulation results are in section IV and conclusions
are placed in section V. 
  

II. The Suggested extension : 
Harmonic potential fields (HPFs) have proven themselves to be
effective tools for inducing in an agent an intelligent, emergent,
embodied, context-sensitive and goal-oriented behavior (i.e. a
planning action). A planning action generated by an HPF-based
planner can operate in an  informationally-open and
organizationally-closed mode [19] enabling an agent to make
decisions on-the-fly using on-line sensory data without relying
on the help of an external agent. HPF-based planners can also
operate in an informationally-closed, organizationally-open
mode which makes it possible to utilize existing data about the
environment in generating the planning action as well as elicit
the help of external agents . A hybrid of the two modes may
also be constructed. Such features make it possible to adapt
HPFs for planning in a variety of situations.  For example in
[20] vector-harmonic potential fields were used for planning
with robots having second order dynamics. In [21] the approach
was configured to work in a pursuit-evasion planning mode, and
in [22] the HPF approach was modified to incorporate joint
constraints on regional avoidance and direction. The
decentralized, multi-agent, planning case was tackled using the
HPF approach in [23].  The HPF approach was also found to
facilitate the integration of planners as subsystems in networked
controllers containing sensory, communication and control
modules with a good chance of yielding a successful behavior
in a  realistic, physical setting [24].   A basic setting of the
HPF  approach is shown in (1) below:    

 L2V(X)/0          X0S                                 (1)

subject to:  V(XS) = 1,  V(XT) = 0 , and   at  X = ',
V 0∂

∂
=

n
A provably-correct  path may be generated using the
gradient dynamical system: 

                               (2)x - V(x).= ∇
where S is the workspace,  ' is its boundary, n is a unit
vector normal to ', Xs is the start point, and XT is the
target point. The above equations model the behavior of an
electric current flowing in a homogeneous conductor with a
conductivity F(x)= constant [25]. The conductor is populated by
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perfect insulators (F=0) occupying the forbidden regions
surrounded by ' (figure-4). 

Figure-4: Physical metaphor for the planner

The flow is described by the electric current density(J): 
 .                  (3)J(x) (x) V(x)= − ∇σ

The homogeneous Neumann condition means that the current
cannot penetrate the perfect conductor and has to move tangent
to it. The Laplce equation is simply a product of applying the
continuity condition to the electric flow: 

   .               (4)∇ ⋅ − ∇( σ (x) V(x)) = 0
If F is constant, equation (4) reduces to the well-known Laplace
operator in (1). The conductivity F represents how favorable a
point in the robot’s space is to conducting motion. A F=0 means
that the corresponding space does not support motion at all. On
the other hand,  a high value of F means that the corresponding
space highly favors motion. 

It is possible to establish a tight analogy between the above
situation and the situation where the agent’s environment is to
be represented in a task-centered manner using a PDF (P(x))
describing at each point in the agent’s space the agent’s ability
to perform the assigned task. It does not matter what the causes
are  (e.g. sensor problems, rough terrains, man-made hazzards
etc. ), if the agent is expected to encounter difficulties operating,
a low value for P(x) is assigned to that region. Generating a path
in this situation may be done using the planner: 
                    LA(P(x)LV(X))/0 X0S                       (5) 
subject  to:       V(XS) = 1,  V(XT) = 0

A provably-correct  path may be generated using the
gradient dynamical system: 

                  (6)x - V(x).= ∇
It is shown later in the paper  that the generated path, which is
guaranteed to connect the start point to the target, will strictly
avoid regions assigned P(x)=0. 

The modified differential operator in (5) is strongly related to
the ordinary Laplace operator and possesses a useful physical
interpretation. First, the operator should be expanded as: 

       LA(P(x)LV(X)) = P(x)L2V(X) + LP(x)tLV(X) =0,         (7)
which leads to:   
                 L2V(X) = - (1/P(x)) (-LP(x)t (-LV(X))).
Notice that -LV(x) is the direction at which motion is to be
driven and  -LP(x) is a vector pointing in the direction of
increasing risk. Also keep in mind that the Laplacian of a

potential is the divergence of the gradient field which is
physically defined as: the outflow of flux when the volume
shrinks to zero. If the laplacian is negative, it means that there
is a sink in the closed region, i.e. motion is inhabited by
absorbing the gradient flux used to direct motion. If the
laplacian is positive, it means that there is a source in the closed
region, i.e. motion is stimulated by aiding the flow of the
gradient flux. When the laplacian is zero (Lapace equation), the
region is neutral towards the gradient flux. As can be seen the
modified operator can be viewed as an intelligent version of the
HPF which is sensitive to the future ability of the agent to carry-
out its task (figure-5). 

 

       Figure-5 behavior of the modified operator. 

III. Performance analysis: 
In this section propositions along with their proofs are provided
to explore  the behavior of the suggested planning method. 

Proposition-1: The path generated by the PDE-ODE system in
(5) will avoid regions that have  zero probability of achieving
the task  (O={x: P(x) = 0}). 

Proof: Assume a point x that is arbitrarily close to O (figure-6).
Since P(x) is differentiable its value may be assumed equal to
zero.  Using the identity: 

LA(P(x)LV(x)) = LP(x)t LV(x) + P(x)L2V(x) = 0    (8)

when x is close to O, (8)  reduces to:  
         - (-LP(x)t )(-LV(x))  = 0. 
Note that -LP(x) points in the direction of increasing risk that
leads to the region O, while -LV(x) is the direction along which
motion is to be steered. In other words, in the vicinity of O, the
planner will project motion tangent to the boundary of the zero
probability region; hence, O will be avoided. 

Figure-6: Zero-P regions will be avoided

Proposition-2: A potential field generated using the boundary
value problem in (5) cannot have any minima local or global in
its workspace S (S=RN-(OcxTcxS)). 
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  Proof: Note that from proposition-1 x will always stay in the
workspace (x0S) in which P(x) is greater than zero. The fact
that no minima or maxima can occur in S may be inferred
directly from the differential operator 

LA(P(x)LV(x))  = 0 x 0 S             (9)
At a local maxima, LV(x) will be negative in the whole local
neighborhood surrounding x. Since P(x) in that region is finite
and positive, the governing relation in (9) will be violated. Same
thing will happen at a minima where LV(x) will be positive in
the whole local neighborhood surrounding x. Therefore, no
local or global minima or maxima can occur in S. 
   

Proposition-3: For an S with a finite size, V(x) 0 S is a
Liapunov function candidate (LFC). 
  

Proof: An LFC defined on a finite space must satisfy the
followings: 
1- It must be differentiable or at least continuous, 
2- it must be positive in S (V(x) > 0,  x 0 S),
3- its value must be zero at the target point (V(xT) =0). 
  

Since V(x) is forced to satisfy the differential condition in (9) it
is analytic. Therefore, it satisfies the first condition. Since the
global maximum happens at x=xs (V(xs)=1) and a global
minimum at x=xT  (V(xT)=0) , the second and third conditions
are  satisfied. 
  

Proposition-4: If V(x) is constant at a subset of S, it is constant
for all S. 
  

Proof: Assume that V(x) = C ( C is a constant) in T where Td
S (figure-7). Consider an infinitesimally expanded region T`
that surrounds T. Let xo be a point that lies on the boundary of
T (MT) and xo

+  a point on MT`. 
       

Figure-7: subregions of degenerate fields cannot occur

The potential at xo
+ may be written as: 
V(xo

+) =  V(xo) + drA(-LV(xo)t n)              (10)
where dr is a differential element and n is a unit vector normal
to MT. Since V is constant inside T the gradient field
degenerates to zero. Since the continuity relation (9) is enforced
in both T and T`, equation (10) reduces to: 

V(xo
+) =  V(xo) = C .                  (11)

By repeatedly applying the above procedure, the subregion T
may be expanded to include all S. In other words, if V(x) is
constant on a subregion of S it will be constant for all S. 
Definition-1: Let V(X) be a smooth ( at least twice
differentiable) scalar function (V(X): RN 6 R). A point Xo is
called a critical point of V if the gradient vanishes at that point
(LV(Xo)=0); otherwise, Xo is regular. A critical point is Morse,
if its Hessian matrix (H(Xo)) is nonsingular. V(X) is Morse if
all of its critical points are Morse [27]. 

Proposition-5:  If V(X) is a function defined in an N-
dimensional space (RN) on an open set S and satisfies (9), then
the Hessian matrix at every critical point of V is nonsingular,
i.e. V is Morse. 
  

Proof: There are two properties of V that are used in the proof:
  

1- V(X) defined on an open set S contains no maxima or
minima, local or global in S. An extrema of V(X) can only
occur at the boundary of S, 
2- if V(X) is constant in any open subset of S, then it is constant
for all S.
  

Let Xo be a critical point of V(X) inside S. Since no maxima or
minima of V exist inside S, Xo has to be a saddle point. Let
V(X) be represented in the neighborhood of Xo using a second
order Taylor series expansion:

                *X-X0*<<1.       (12)
V(X) V(Xo) V(Xo) (X Xo)

1
2

(X Xo) H(Xo)(X Xo)

T

T

= + ∇ − +

− −

Since Xo is a critical point of V, we have: 

    *X-X0*<<1.(13)V V(X) - V(Xo) 1
2

(X Xo) H(Xo)(X Xo)' T= = − −

Notice that adding or subtracting a constant to V yields another
potential field that satisfies the relation in (9). Using eigenvalue
decomposition [29]: 

   (14)V 1
2

(X Xo) U

0 0 0
0 . 0
. . .
0 0 .

U(X Xo)' T T

1

2

N

= −
⋅

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

−

λ
λ

λ

=
⋅

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
=
∑1

2

0 0 0
0 . 0
. . .
0 0 .

T

1

2

N

ξ

λ
λ

λ

ξ λ ξ1
2 i i

i 1

N
2

where U is an orthonormal matrix of eigenvectors, 8’s are the
eigenvalues of H(Xo), and >=[>1 >2 ..>N]T = U(X-Xo). Since V`
cannot be zero on any open subset S, otherwise, it will be zero
for all S, which is not the case. This can only be true if and only
if all the 8i’s are nonzero. In other words, the Hessian of V at a
critical point Xo is nonsingular. This makes V a Morse function.

Proposition-6: Let V(x) be the  potential field generated using
the BVP in (5). The trajectory of the dynamical system: 
                                       (15)( )x V x= −∇
will globally, asymptotically converge  to: 

             (16)lim
t→∞

→x x T

 Proof of the above proposition is carried out using the LaSalle
invariance principle [30]. 
  

Proof: Let = be the Liapunov function candidate: 
                                  (17)Ξ = V(x)

Its time derivative is:  .        (18)Ξ = ∇V(x) xT

Substituting:                     (19)x = V(x)−∇
in (18) yields:              (20)Ξ = V(x)− ∇ 2

LV will vanish at the target point (xT) and may have isolated
critical points {xi} in S. This results in: 

     ,             (21)Ξ ≤ ∀0 x
According to LaSalle principle any bounded solution of (19)
will converge to the minimum invariant set: 

            .                        (22)E {x x }}T i⊂ ∪{
Determining E requires studying the critical points of V(x)
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where LV(x)=0.  According to the maximum principle, xT is the
only minimum (stable equilibrium point) V(x) can have. Besides
xT , V(x) has other critical points {xi} at which LV=0; however,
the hessian at these points is non-singular, i.e. V(x) is Morse.
From the above we conclude that E contains only one point
which is the point  to which motion will converge.x xT=

IV. Results: 
There are several settings in which a harmonic potential field
may be configured for navigation. These configurations depend
on the boundary conditions that are used to factor the crisp
environment that is described using appropriate geometric
functions in the process producing the navigation control policy.
Some of these settings are discussed  in [31,32]. Each one of
these configurations possess distinct topological properties that
are reflected in the integral and differential properties of the
generated path. Figure-8 shows the control navigation policy of
four different configurations for a simple rectangular
environment. 
    

               Homogeneous    Neumann      Nonhomogeneous Neumann
                                    

      

       Dirichlet     Biharmonic
Figure-8: Navigation policies, different settings, HPF approach [32]. 

Here the suggested approach is simulated for a similar
environment. The environment is factored into the navigation
process using the probabilistic descriptor (pseudo PDF) of
terrain suitability for motion. The descriptor is equal to zero
inside the obstacle and one in the workspace. 

The navigation control policy and the generated path are shown
in figure-9. Unlike the deterministic case where the navigation
policy degenerates inside the region to be avoided, the
probabilistic HPF approach maintains the navigation field inside
this region. This is of practical value since if a disturbance occur
throwing the robot inside a forbidden region it can resume
motion to get out of it instead of staying motionless in that
region. The generated path is well-behaved with reasonable
length compared to the optimum. It has  almost constant
curvature and keeps a healthy distance away from the forbidden
regions. 

Figure-9: path and navigation policy - suggested approach
   

In figure-10 a more challenging environment is used to test the
approach. The probabilistic descriptor is shown as an intensity
image where the brighter is the area, the more fit it is for
navigation. As can be seen segmenting  this map into regions
suitable for navigation and others that are not is very difficult if
at all possible. Moreover a binary segmentation could result in
creating isolated regions that are disconnected from the rest of
the workspace. The generated path superimposed on the image
of the probabilistic descriptor of the environment is also shown
in figure-10. Visually assessing the path, it can be seen that the
path is smooth, has a reasonable length and is practically
restricted to the bright areas that are best suited for navigation.
Figure-11 shows another nondivisible environment with paths
generated by the planner for different start and end points. 
 

V. Conclusion: 
In this paper the capabilities of the HPF approach are extended
to tackle planning in environments  with inherent uncertainty
that denies an operator the ability to segment the workspace into
geometric regions of homogeneous attributes. The approach has
several practical advantages. It makes it possible to directly  use
the sensor ambiguity map in planning a path with good
properties without having to process the data and interpret it in
a deterministic manner. Incorporating the environment in the
action generation process using a task-centered, probabilistic
field makes it possible to use vague representations of an
environment to generate actions in a provably-correct manner.
The suggested planner is expected to be useful, among other
things,  in building practical, reliable, low-cost navigation
systems. 
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