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Abstract - In this paper a convergent, nearest-neighbor, consensus control
protocol is suggested for agents with nontrivial dynamics.  The protocol
guarantees convergence to a common point in space even if each agent is
restricted to communicate with its nearest neighbor. The neighbor, however, is
restricted to lie outside an arbitrarily small priority zone surrounding the agent.
The control protocol consists of two layers interconnected in a provably-correct
manner. The first layer guides the agent to the rendezvous point while the other
converts the guidance signal to a control signal that suits realistic agents such
as UGVs, UAVs and holonomic agents with second order dynamics. 

I. Introduction
Consensus protocols have  applications  in many areas, e.g.
decision making, planning, computer networks and robotics
[1,2]. The nearest neighbor consensus protocols are the most
important . They involve asynchronous exchange of information
on a communication graph whose topology is continuously
switching. Nearest neighbor consensus was first examined by
Vicsek et al. [3] who modeled the ability of a flock of birds to
converge to the same heading by each member averaging the
headings of its neighbors.  An analysis of this behavior was
carried out in [4] by Jadbabaie et al. Cucker & Smale [23]
suggested a distance tunable model for velocity consensus. Each
member of the flock interacts with all other members. They
provided conditions for convergence that depend only on the
initial state of the flock.  In [19] a decentralized nearest-
neighbor multi-agent controller was suggested to de-conflict the
use of space. It uses only two behavioral primitives: collision
avoidance and moving out of the way on close encounters with
others. It was noticed in some of the simulation results that
synchronous behavior emerged where the agent platooned
moving at the same speed in the same direction.   
 

Design and analysis of  protocols that would guarantee
convergence to a common value of a desired attribute of
operation [5-10] is a major focus of attention in studying
consensus. Other aspects such as ability to converge in the
presence of noise [11] and placing constraints on the process
[12] were also investigated. Unfortunately, despite their
simplicity, efficiency and practicality, nearest neighbor
protocols may not be able to guarantee convergence of a group.
 

Most consensus protocols are utilized by agents that have
involved dynamics. Even if a protocol is convergent, the
interaction between the protocol and the dynamics of the agents
may prevent consensus from happening.  The interaction
between the communication graph and the dynamics of the
agents are being studied [13-16] to derive and tune protocols
that would guarantee convergence when they are utilized by
dynamical agents. 
 

This work has two contributions. First, it offers a variant of the
traditional, nearest neighbor consensus protocol. The suggested
protocol guarantees convergence of the group to a common

rendezvous point. It only requires each agent to be able to
communicate with at least one other neighbor.  This neighbor is
the one closest to the agent provided that it lies outside an
arbitrarily small priority zone surrounding the agent. The second
contribution has to do with guaranteeing stability when the
protocol is used by a group of dynamical agents. The procedure
for converting the guidance signal from the consensus protocol
to a control signal does not require exchange of velocity
information among the agents (i.e. exchange intentions). Along
with the consensus guidance signal each agent uses its own
velocity information for generating the control signal. 
  

The generation of the consensus control protocol is based on a
series of methods suggested by this author. The methods
convert the guidance planning signal from a harmonic potential
[17-19] to a control signal for holonomic systems with second
order dynamics [20], nonholonomic mobile robots [21] and a
large class of UAVs [22]. It is demonstrated in this paper that
these techniques which are designed for a single agent are fully
capable of functioning as control protocols in a multi-agent
environment.   The close relation between harmonic potential
and the consensus problem  is the main motivation for
examining the use of these techniques. The value of a harmonic
potential at a point is arrived at iteratively as the average value
of its immediate neighbors. 
  

This paper is organized as follows: section II presents the
modified protocol, section III discusses the convergence of the
protocol. Section IV examines the communication burden
needed for each agent to remain connected to it’s closest
priority agent. Section V presents the techniques used for
converting the protocol signal into a consensus control signal
for different types of dynamical agents. Simulation results are
in section VI and conclusions are in section VII. 
 

Figure-1: nearest neighbor consensus protocol does not guarantee
unconditional convergence

   
II. The consensus protocol 

 Nearest neighbor-based consensus protocols are important and
practical. Whether the information exchange among the agents
is based on sensing or communication, nearest neighbors
always have the best chance succeeding in such a regard.
Unfortunately, existing protocols do not guarantee convergence
to a consensus state using conditions that are both controllable
and a priori  known to the operator. Figure-1 shows the effect
of increasing the number of neighbors (L) on the ability of 50,
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single-integrator  agents to rendezvous at one point. As can be
seen the less the number of neighbors is the more separate
rendezvous points are created. 
 

This author  strongly believe that the main cause of the
convergence problem has to do with the manner in which the
effort to establish consensus is distributed. It does not make
sense for an agent to spend an effort establishing consensus with
another agent who is already in agreement with it. Such agents
may be considered as one agent with multiplicity more than one.
Agents with large, but manageable, deviations from the actor
agent should have high priority. Others whose state is close to
the agent concerned should have low priority as far as
dispensing the consensus effort is concerned. The following
provides an implementation of the suggested approach. 

Figure- 2: priority buffer arrangement
 

Consider an N-dimensional sphere of radius , ($i(X)) that is
centered around the position of the i’th agent  (Xi)

           .           (1)β εi ( }X X ) {X: X Xi i− = − ≤
If the j’th agent (i…j) is in $i ( Xj 0 $i ), this agent is considered
as a low priority agent. Otherwise, it is a high priority agent. Let
dij be the distance between the i’th and the j’th agents (di,j =*Xi
-Xj*). Let Xoi,j be a buffer containing the locations of the agents
ordered in an ascending manner based on their distance from Xi
(di,j-1 #di,j #di,j+1 , i=1,..,N, j=1,...N, i…j). Existing consensus
protocols that use the L closest neighbors generate the velocity
vector of the i’th agent as 

                   (2)X uc a (Xo - X )i i i, j i, j i
j

= =
=
∑

1

L

where aij are positive constants. 
 

The modified protocol works as follows: first, the protocol
priority orders (figure-2) the agents relative to the i’th agent
(Xpij ). Xpij is constructed as follows     

                                (3)
Xp Xo     j 1,..,N Lo
Xp Xo  j 1,...,Lo

i, j i, j Lo

i, j Lo 1 i,L0 j 1

= = −
= =

+

+ − − +

where  di,Lo < ,, N is the total number of agents and Lo is the
number of agents inside $i. In a similar manner to the normal
protocol, the velocity the i’th agent is constructed as      

                           (4))X uc a (Xp Xi i i, j i, j i
j

= = −
=
∑

1

L

III. Convergence Analysis 
The modified protocol is convergent. If the i’th agent maintains

connection with at least one agent outside $i , all agents will
converge to $i. Since, in $i , the i’th agent guarantees that the
most distant agent will converge to its position, it guarantees
that all other agents will also converge. An agent’s motion is
observed relative to Xi. Three distinct hyper-spheres (figure-3)
whose center is  Xi are used in the proofs: The previously
defined priority zone, $i, in which Xi is guaranteed to
communicate with all agents in that zone. A hyper sphere, Si ,
containing all the agents of the group. The center of Si is Xi. Its
radius, dxi , is selected as the distance between  Xi  and the agent
furthest from it,  Xj , 
                       Xi 0 Si(X) œ i (5)S (X) {X: X X dx }i i i= − ≤
The last sphere with Xi as a center is Fi (FidSi(X) ) .  This is the
largest sphere containing only one agent, Xk, which is the agent
closest to Xi that does not belong to $i 

            Xk 1 Fi = Xk ,      Xi 1 Fi =  i      i…k         (6)
It ought to be noticed that by construction, for the case of L=1,
the consensus protocol will only operate on agents with non-
zero distance. Therefore an implicit assumption in the proof is
that Xi …Xj for any i & j. 
                  

                Figure-3: distances relative to agent i
  

Proposition-1: The distance, dmi, between Xi and Xk 
     dmi = *Xk  - Xi*         (7)

is always decreasing. 
 

Proof: There are two possibilities, either the agent closest to Xk,
Xl , is in $i or it is outside Fi.c$i . If Xl 0 $i , then 

                 (8)
d(dm )

dt
dm dm cosi

i k= − − ⋅ ( )θk

where            &        dmk = *Xl  - Xk*. − < <
π θ π
2 2k

In other words:              cos(2k) > 0 

and                   (9)
d(dm )

dt
i < 0.

In the second case (Xk 0 Si - ($i c Fi)), we have
            dmk < dmi       (10)

otherwise Xk will be closer to an agent in $i .  Therefore,
regardless of the value of 2k equation-9 will still hold making
the derivative of dmi   strictly negative. 

Proposition-2: The modified protocol is globally asymptotically
convergent, i.e.
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           i=1,...,N        (11)lim
t→∞

=X Xi c

N is the number of agents, Xc is the rendezvous point.

Proof: The proof is carried-out for L=1 connectivity (i.e. each
agent moves towards one and only one agent). This proof
subsumes the one for L>1 connectivity. The proof is based on
showing that the distance, dxi,  from an agent i to the agent
furthest from it, agent j, will shrink zero, i.e. 

                   i=1,...,N      (12)lim
t→∞

=dx 0i

where                     j=1,...,N    (13)dx X Xi j i= −max
j

The time derivative of dxi may be written as:

                         (14)
d(dx )

dt
Fi Fji = +

where Fi is the dot product between the velocity vector of agent
i ( ) and the unit vector from Xi pointing towards Xj. Fj is theXi

dot product between the velocity vector of agent j ( ) and theX j

unit vector from Xj pointing towards Xi

                    (15)
d(dx )

dt
-

(X X )

X X
(X X )i i j

T

i j
j i=

−

−
−

The derivative may be written as: 

         (16)
d(dx )

dt
-(dm cos( dm cos(i

i i j j= ⋅ ) + ⋅ ))θ θ

where dmi is the distance between agent Xi and the agent closest
to it (Xk) that lies in Fi, dmj is the distance between agent Xj and
the agent closest to it (Xn) that lies in Fj, 2i is the angle between
lines dmi and dxi and 2j is the angle between lines dmj and dxi.

Let’s examine the derivative of dxi in the two zones: Si-$i and
$i.   As shown in propositon-1, in the zone Si-$i, dmi is always
decreasing. On the other hand, 2j is restricted to lie between 

        − < −
⋅

≤ ≤
⋅

<− −π ε θ ε π
2 2

cos
2 dx

cos
2 dx

1

i

1

i

( ) ( )j

and dmj $ ,       (17)

In the limit          j =1,..N,  j…i   (18)d(dx )
dt

< 0 Xi
j ∈ −Si iβ

which will guarantee that all agents will converge to $i. 

Once Xj enter $i, the control law moves  agent i towards the
agent that is furthest from it (agent j). This makes  

            (19)
d(dx )

dt
X Xi

j i= − −

Xi …Xj. This will guarantee that  
          i=1,...,N          (20)limdx 0

t i→∞
=

The fact that all agents will converge to agent Xi for any i can
only hold if all agents converge to the same point Xc, 

          i=1,..N      (21)limX X
t i c→∞

=
 

IV. Communication Range limits
The communication limits on the agents is an important factor
in determining the practicality of a consensus protocol. In this
regard, the suggested protocol has nonastringent requirements.

The protocol is guaranteed to converge even if each agent is
restricted to communicate with its nearest neighbor outside $.
If an agent cannot communicate with the closest agent, this
agent is isolated and cannot participate in the consensus  effort
to begin with. However, the communication limits may still be
assessed by examining the behavior of the maximum of the
distances connecting each agent in the group to its closest
neighbor outside the priority zone ($) corresponding to that
agent (dxm)

           (22)d max(mind / dxm i j i, j i, j= > ε)

where di,j’s are entries in the distance matrix D, the i’th row has
the distances from agent i to all other agents in the group.  
 

A large  increase in dxm during operation may jeopardize the
ability of the agents to communicate. As shown below, the
protocol can inhibit the growth of   dxm , hence prevent the
communication burden from increasing during the effort to
establish consensus. . 

           D=       (23)

0 d d . d
d 0 d . d
d d 0 . d

. . d . .
d d d . 0

12 13 1N

21 23 2N

31 32 3N

ij

N1 2N 3N

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 

Proposition-3: if an agent j enters into the priority zone of agent
i ($i) it will remain inside $i . 

          

   Figure-4: In an agent enters $i it remains in $i. 
 

Proof: The proof follows directly from proposition-1.  This may
also be deduced from the fact that when Xj has just left $i it
becomes the minimum distance agent away from Xi and the
protocol will steer it back to $i. 
 

Proposition-4: If agent-j lies in the intersection of $i and $k 
  X j ∈ ∩β βi k

then                           œt.       (24)X X 2i k− < ⋅ε
          

Figure-5: joint sharing of an agent guarantees connectedness
 

Proof: this follows directly from proposition-3. If Xj is inside $i
and $k then it will always belong to these two regions. This can
only happen if equation-24 holds. 
 

 Proposition-5: If  › an Xj 0  $i 1 $k   œ i…k, then  
dxm < 2,        œt.             (25)

Proof: this proposition follows directly from proposition-4. 
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 It ought to be mentioned that attempting to control dxm by
increasing the connectivity of the graph maybe ineffective in
controlling the growth of this distance. While increasing
connectivity will accelerate the consensus process, it will not
prevent the creation of drifting clusters each forming a closed
group with agents that are temporarily communicating with each
other. To reduce the probability of such clusters forming,
connectivity has to be increased to an unrealistically high value.
 

V. The consensus control protocol
Converting the consensus protocol to a consensus control
protocol is a challenging task. The challenge is to achieve
system stabilization as well as compliance with the guidance
signal from the protocol using local information and actions. In
other words, each agent must use its own state to synthesize a
successful, self-control action. A series of work by this author
on the above subject proves to be promising. The control
schemes were designed for a single agent to suppress any
motion that lies in the space orthogonal to the guidance vector.
This paper demonstrates that this approach to design makes the
controller a valid control protocol that may be successfully used
in a multi-agent environment. Proofs of correctness and
extensive simulation to show the robustness of the control
protocols to delays, actuator saturation and external drift were
omitted from the paper due to space limitations. 
         

 Figure-6:  NADF  based  control protocol

 1. Agents with second order dynamics  
The simplest holonomic agent with second order dynamics has
the form    i=1,..N       (26)X ui i=
The simplistic way of constructing a control protocol for this
case is to  augment the consensus protocol with a damping term
constructed from the agents’ velocities

            i=1, .. N     (27)X uc bXi i i= −
If a small b is used, the dynamical interactions among the agents
may prevent them from reaching consensus. If an excessively
large b is used, motion will be severely impeded and
convergence may not be possible. To solve this problem the
concept of nonlinear, anisotropic damping forces (NADF) was
suggested in [20]. NADFs  (Figure-6) selectively apply high
motion impedance (udi)  in the space orthogonal to uci

             (28)ud [n X n (
uc
uc

X (uc X ))
uc
uc

]i i
T

i i
i
T

i
i i

T
i

i

i

= + ⋅ Φ

where ni is a unit vector orthogonal to uci and M is the heaviside
function. The control protocol in this case is 

.                   (29)X uc bX K udi i i d i= − −
Excessively high value of Kd may be used without degrading the
quality of the control signal. 

2. Nonholonomic mobile agents
In [21] a method is suggested for converting uci into a control
signal for a UGV whose system equation may be written as

        (30)P F(P)
Q(U)

=
=

λ
λ

where P is the posture of the UGV, 8 is the velocity in the local
coordinates and U is the control signal. 

                                 

Figure-7: A car-like mobile robot

Many practical robots do fit the above system equation
including the car-like, front wheel-steered UGV (figure-7) with
system equation and control protocol 

     ,                      (31)
x
y

cos( ) 0
sin( ) 0

0 1θ

θ
θ

ν
ω

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣
⎢

⎤

⎦
⎥

       ,    
ν
ω

ω
ω ϕ

⎡

⎣
⎢

⎤

⎦
⎥ =

⋅
⋅ ⋅ ⋅

⎡

⎣
⎢

⎤

⎦
⎥

r
r Ln tan

h

h ( )
ω
φ

ν
θ ν

h r

r

⎡

⎣
⎢

⎤

⎦
⎥ = ⋅

⎡

⎣
⎢

⎤

⎦
⎥−tan Ln1( / ( )∆

       <r = K1@*uci* &   )2 =K2(arg(uci) -2) 
 

where P=[x  y 2]t, 8=[< T]t, U=[Th  N]t,  r is the radius of the
robot’s wheels,, < is the tangential velocity of the robot and T
is its angular speed, Ln is the normal distance between the
center of the front wheel and the line connecting the rear
wheels, Th is the angular speed of the rear wheels, and N is the
steering angle of the front wheel (B/2>N>-B/2).

 3. Unmanned Aerial Vehicles.
In [22] a control structure (figure-9) is suggested for converting
the guidance signal in a provably-correct manner to a control
protocol that suits a dynamical system of the form 

                (32)
( )

( , )
X G

F U
=
=

λ
λ λ

where U is the control signal, X is a vector containing the
location of the center of mass of the UAV in the world
coordinates, X=[x y z]t, 8 is the motion  vector in the local
coordinates of the UAV, 8=[< ( R]t , < is the radial speed of the
UAV, ( and R are angles describing its orientation with respect
to the world coordinates. This model suits most  UAVs.  A
specific form for equation 32 that describe a fixed-wing (figure-
8) aircraft is shown in equation 33, 

Figure-8: A fixed-wing UAV.
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                         (33)

x cos( )cos( )
y cos( )sin( )
z sin( )

F
m

g sin( )

F cos( )
m

g cos( )

F sin( )
m cos( )

.

T

N

N

= ⋅
= ⋅
= ⋅

= − ⋅

=
⋅
⋅

−

=
⋅

⋅ ⋅

ν γ ψ
ν γ ψ

ν γ

ν γ

γ
σ

ν
γ

ν
ψ

σ
ν γ

where m is the point mass of the UAV, < radial velocity of the
UAV, ( flight path angle, R directional angle, F is the banking
angle, FT the resultant force along the velocity vector: 

FT = TAcos(,) -D                      (34)
and FN is the resultant force normal to the velocity vector: 

FN = TAsin(,) + Lf                    (35)
and g is the constant of gravity,  T is the thrust from the engine,
D is the aerodynamic drag, , is the angel of attack, Lf is the
aerodynamic lift.

 

Figure-9: converting guidance into control for a UAV

VI. Simulation Results 
In figure-10 the modified consensus  protocol is tested for 2400
agents with a uniformly-distributed, random initial
configuration. Each agent communicates only with one other
agent (the nearest neighbor outside $) in its attempt to establish
consensus. The radius of the low priority region (,) is arbitrarily
set to 1. As can be seen, consensus was established and the
agents converged to a point that is close to the average of the
initial configurations. 

It is well-known that the more neighbors an agent communicate
with (i.e. the more connected the communication graph is) the
faster convergence will be. However, the effect of , on
convergence need to be examined. The value of , is varied from
zero to a high value. The convergence time is measured.  The 
simulation is carried-out for 100 agents each communicate with
the closest 5 neighbors (figure-11). All other cases showed a
behavior similar to the one obtained for this case. When , is set
to zero, i.e. the algorithm reduces to the original nearest
neighbor algorithm, the group did not reach consensus and no
convergence took place. It is observed that convergence time
exponentially drops as a function of ,. It settles to a constant
value as , increases. It is noticed for this case that  small values
of , exceeding .02 do not offer any significant improvement as
far as the convergence rate is considered. 

          

       Figure-10: Modified protocol guarantees convergence, L=1. 
    

In table-1, the effect of , on dxn is tested for 200 agents initially
located in a 30×30 rectangular region and distributed in space
using a uniform PDF. The initial dxn, maximum dxn and time
(Tc) to consensus (in time steps) are recorded. The average
distance traveled by the agents until consensus is achieved (dL)
along with the most distance traveled minus the least distance
traveled ()) are also recorded. As can be seen there is a
considerable growth in dxn for low values of ,. At ,=3,
condition-25 is satisfied. This restricted the maximum value of
dxn for ,$3 to less than 2,.  The changes in , has minimal effect
on the time to reach  consensus. Figures 12 & 13 show dxn
versus time for ,=1 and ,=3 respectively. The ability to control
the growth of dxn is obvious. Increasing connectivity to control
dxm is investigated in table-2. Although the rate of convergence
significantly improved, L had practically no effect on dxm until
it was set to an unrealistically high value. 
                 

Figure-11: Time to converge versus log(,)

   

         Figure-12: dxn versus time, ,=1            Figure-13: dxn versus time, ,
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,
dxn

initial
dxn 

maximum       dL ) Tc

.05 4 15.2 26.7 .9 550
.5 3.9 13.3 26.6 .064 560
1 4 15.6 27.9 .074 550

1.5 4 13.9 26.1 .077 510
2.0 4 9.94 35.1 .07 530
2.5 4.8 7.61 32.22 .071 590
3 4.7 5.97 28.77 .066 570

3.5 4.9 6.39 25.9 .073 510
4 5 7.19 24.8 .07 490

Table-1: Maximum dxn versus ,, L=1=3

L dxn
initial

dxn 
maximum

dL ) Tc

1 4 15.6 27.6 .0622 550
2 4 13.1 23.4 7.3 270
3 4 15.9 24.5 4.3 180
4 4 13.4 28.3 6.2 135
5 4 15.3 24.7 5.2 110
6 4 14.1 24.3 5.5 85
7 4 15.2 25.4 6.2 78
8 4 15 24.3 6.1 69
9 4 14.9 30.9 8 60
20 4 12.1 23.1 10.7 27
30 4 9.9 23.2 12.1 18
40 4 4.5 35.1 13.2 13

Table-2: Maximum dxn versus L, ,=1.
 

The ability of the techniques presented in section V to convert
the consensus protocol into a decentralized consensus control is
tested. The directed communication graph in figure-14 is used
for this purpose. The graph has a cycle that contains all the
nodes. Therefore, for a single integrator system, convergence is
guaranteed. 

Figure-14: A directed communication graph
   

Figure-15 shows the response of five single integrator agents
attempting to obtain consensus. As can be seen, the group
converges to a rendezvous point. In figure-16, the single
integrator agents were replaced with double integrator agents.
As can be seen, the group failed to converge. In figure-17, the
NADF approach is used to generate the consensus control. The
following parameters are selected Kd=150 and b=2. As can be
seen, the resulting trajectories for the double integrator agents
are almost identical to those of the single integrator agents. The
control signals for the first agent are shown in figure-18.
Despite the use of excessively high NADF,  the control signal
is well behaved. The convergence rate is also unaffected. The
sharp fluctuations in the control signals that occur at the end are
caused by interaction forces when the agents are in very close
proximity to each other. The problem can be easily solved by
requiring convergence to be to a small region instead of a point.

The ability of the control scheme suggested in equation-31  [21]
to convert the guidance signal into a consensus control signal
for a group of car-like robots is tested in figure-19. A group of
five agents that are uniformly distributed on the circumference
of a circle with unity radius, all initially oriented along the
positive x-axis are used. The agents are using the
communication graph in figure-14 to exchange data.  The
parameters used are K1=0.5 and K2=4. The orientation and

control signals of the fifth agent are shown in figures 20,21
respectively. Figure-22 shows the trajectories of the agents for
a different set of parameters K1=0.5, K2=10. K2 is responsible
for improving the alignment of the robot with the guidance
field. Increasing it does improve the response of the group. 

Figure-15: Single integrator agents using the graph in figure-14. 

Figure-16: Double integrator agents using the communication graph in
figure-14

Figure-17: Double integrator agents using the communication graph in
figure-14, NADF used. 

Figure-18: x & y components of the control signal for agent-1.

Figure-19: trajectories for car-like agents, K1=.5 K2=4
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    Figure-20: Orientation , agent-5      Figure-21: Control signals agent-5

Figure-22: trajectories for car-like agents, K1=.5,  K2=10
 

Figure-23 shows two jets described by the system equation in
(33) taking-off and synchronizing their orientation in a
decentralized manner by converting the guidance signal into a
control signal using the method suggested in [22].                   

     

Figure-23: two jets synchronizing their orientations.
 

VII. Conclusions
A new nearest neighbor consensus control protocol is suggested
to solve the convergence problem the traditional protocol suffers
from.  The protocol is guaranteed to converge regardless of the
initial conditions even if each agent is restricted to communicate
with its nearest neighbor only. The neighbor is restricted to lie
outside an arbitrarily small priority zone surrounding the agent.
The protocol has  the ability to guarantee that the
communication burden during the effort to establish consensus
does not increase when compared to the initial burden at the
start of the protocol.  It is also demonstrated that the consensus
guidance signal may be easily converted into a consensus
control protocol that may be used by a wide variety of practical
dynamical agents.
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