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Abstract— In this paper, we introduce a communication-
aware algorithm to navigate mobile agents with non-trivial
dynamics in cluttered environments. The navigation technique
is based on the Harmonic Potential Field (HPF) approach to
motion-planning. The proposed approach employs beamform-
ing at the Base-Station (BS) simultaneously with the robot’s
motion to increase the Channel Spectral Efficiency (CSE). The
approach is developed and basic proofs of performance are
provided. Realistic simulations using the WINNER-II wireless
channel model are used to demonstrate the navigation algo-
rithm.

I. INTRODUCTION

Critical missions, such as search and rescue, reconnais-
sance, or surveillance, require autonomous agents to transmit
real-time sensory data over a Wireless Communication Link
(WCL). Therefore navigation systems for such agents are
required to satisfy communication constraints so as to fulfill
the data-transmission requirements. The core aspects that a
communication-aware navigation systems needs to jointly
tackle are [1], guidance, control, communication and energy
consumption.

Recently, there has been a surge in interest in
communication-aware navigation techniques. Researchers
are looking at adapting the spatial movement of the agent so
as to improve its Wireless Communication Channel (WCC).
They are examining motion planning methods to jointly
optimize sensing and communication performance along
with spatial movements, [2], [3]. Moving in a formation
among obstacles with Line Of Signt (LOS) constraint was
presented in [4], while [5] introduced an indoor search while
maintaining a communication link with an external BS.
Another approach is to define the WCL in binary terms [6],
i.e., connected or disconnected regions. All these techniques
use simplistic representations of the wireless communication
channel, assuming signal quality to be dependent on distance
or based on LOS. Practically, in highly populated areas, or
indoors, these simplified models, ignore the electromagnetic
phenomena that affect the WCL.

Recent work has seen more realistic models of the WCC
being used in motion planning. Lindhé [7] studied the
improvement that can be gained by taking into account the
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effects of Multi-Path Components (MPC) on Received Signal
Strength (RSS). The strategy tries to exploit the fact that
the MPC of the transmitted signal constructively add at the
Receiver (RX) within a few cm (function of wavelength).
The core of the work looks at developing stop and go while
tracking a reference trajectory based on the Signal to Noise
Ratio (SNR) at the RX. Stopping intervals lengths were
decided based on the SNR at the stopping point. Also, a
probabilistic framework was developed to find the number
of spatial stopping points around the original trajectory such
that the agent is able to obtain the desired gain in SNR with
a certain probability. Only Differential Drive Robots (DDR)
and Front Steered Robots (FSR) type agents were studied.
It was shown that these strategies could give up to 5dB of
gain in SNR. The drawback of stop and go strategies is that
discontinuous motion increases energy usage which deplete
the battery energy reserve faster.

Mostofi in [8] introduced strategies to adapt the motion
of a group of Unmanned Air Vehicles (UAV)s, cooperatively
tracking a target with linear dynamics. The proposed work
uses on-line SNR and correlation information of the WCL to
help predict its information gain via communication and de-
cide on its next movement. [9] introduces a communication-
aware target sensing problem, where a group of autonomous
agents locally sense the presence of targets and relay the
sensed data to a BS. The WCC was modeled as a multi-scale
random variable described probabilistically using underlying
parameters that can be estimated based on previous obser-
vations. [10] developed a modified version of the navigation
function to obtain path plans for tracking a mobile target and
transmitting their estimated data (own location and location
of target) to a BS.The connectivity was defined by comparing
the SNR of the agent to a threshold and the regions where
the SNR was below the threshold were modeled as obstacles
and thus were integrated along with other physical obstacles
in to the navigation function.

[11] builds on the work on estimation of the SNR field
by estimating the underlying parameters of a multiscale
(path loss, shadow fading and multipath fading) probabilistic
model of the SNR. A communication aware plan for a holo-
nomic agent was proposed based on minimizing the error in
prediction of the SNR field. [12] proposes a communication-
aware approach for multi-agent target tracking. The authors
introduce a framework to estimate the underlying parameters
for a multi-scale WCC model such that the mean squared
error in channel assessment is minimized at the next step.
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Yuan et. al. in [13] examined the problem of maximizing
the amount of information sent to a BS while moving on a
fixed trajectory within a fixed time. It proposes modulation
of the speed and transmission power at the agent during its
motion along the trajectory to maximize the amount of data
sent and minimize the energy consumption.

Most of the work found in the literature focuses on a
specific aspect of Communication-Aware Navigation (CAN)
while assuming simplistic models for the others. This can
result in the actual performance significantly (sometime
destructively) deviating from the desired one. Our focus is
on developing a framework that is able to fuse together, in a
provably-correct and energy efficient manner, the three criti-
cal aspects, wireless communication, guidance and control
of an agent. At the heart of our work is the integration
of wireless communication constraints with HPFs to obtain
realizable goal-seeking guidance fields. The problem is intro-
duced in Section II, followed by the description of the HPF
based path-planning algorithm in Section III. We provide
claims and proofs in Section IV followed by the results in
Section VI and conclusions in Section VII.

II. PROBLEM DESCRIPTION & FORMULATION

We assume an agent equipped with a single antenna
Transceiver (TRX) is moving with uniform velocity in a n-
dimensional workspace W (W ∈ Rn) with a BS having
nT antennas spaced half a wavelength apart. let p (p ∈
W) denote a position in the workspace . The WCC is

assumed to be narrow band, reciprocal and Time-Division
Duplex (TDD). Let the environment be stationary (WCC
only changes with position). Assuming unit transmit power
and no external interference at the agent, the SNR of the
WCL, is given by

γ =
S

N
=

hhH

σ2
(1)

Where h ∈ CnT×1 is the complex scalar channel gain
of the WCL. σ2 is the variance of zero mean Additive
White Gaussian Noise (AWGN) at the receiver. The data-
transmission efficiency of such a WCL can be quantified
using CSE [14]. CSE of a WCL is directly dependent on its
SNR and is given by

η(h) = log2 (1 + γ(h)) (bits/s/Hz) (2)

The total data that can be reliably transmitted at a particular
location depends on the time spent by the receiver (the agent)
at a particular location. Ideally, it would be desired that the
agent spends more time in regions with higher CSE. The time
an agent spends at a particular location along its trajectory
is nothing but the inverse of the magnitude of the velocity
at that location . This leads us to the following definition

DEFINITION 1: Let β : W → R+, be a function that
maps each point in the workspace to a scalar positive real
number equal to the maximum possible data that can be
reliably transmitted at that point. Then, let β be defined as
the Data-Flow Efficiency (DFE) of a point in the workspace

and β(p) is a scalar field defined by,

β(p) =
η

|ṗ|
(bits/m/Hz) (3)

Def. 1 is important in the sense that it gives a measure
of the communication performance based on the kinematic
properties of the agent. It is a ratio of SNR to velocity
magnitude, thus, linking the position and time spent at a
position with its SNR. It gauges the amount of data that
can be sent per spatial point in the trajectory. It should also
be noted that the DFE can easily be generalized for broad
band channels and time varying environments.In the rest of
the work we will use the SNR and CSE interchangeably
as they are monotonically related. Let the start position be
pS , and the goal position be pG. let the Hard Obstacle
or Hazardous Region (HO) (regions of arbitrary geometry
where the agent can get damaged) be denoted by O and the
Dead Communication Zones (DCZ), ODCZ , be defined as

DEFINITION 2: DCZ, ODCZ , are regions where the
SNR goes below a threshold such that CSE becomes pro-
hibitively low. .

ODCZ = {p ∈ Wa|γ(p) ≤ εD, εD → 0}, εD ∈ R (4)

where,

ODCZ ⊂ Wa =

NDCZ⋃
i=1

odczi

where NOc is the number of DCZ in the workspace.
Assuming single integrator dynamics for the agent and letting
the complete knowledge of the SNR and HO be available to
the agent, the problem can then be formulated as,

for (5)
ṗ = u

find
u(p,pG,pS , γ,O)
Such that,
p(0) = pS

lim
t→∞

p(t)→ pG

p(t)
⋂
ODCZ ≡ φ, ∀t

p(t)
⋂
O = φ, ∀t

p(t) ∈ T | Υ(p(t)) ≤ Υ(qi),qi ∈ T , ∀i = 1, 2, · · · ,∞

Where Υ is the functional that should be minimized by the
trajectory realized and T is the set of all possible trajectories
of the agent.

III. MODEL-BASED COMMUNICATION-AWARE
NAVIGATION (MBCAN)

In this work, we assume that the complete SNR knowledge
of the environment is available to the agent. We build
on the Gamma-Harmonic Potential Field (GHPF) planner
in [15] to generate trajectories that satisfy eq. 5. Results
are derived for an agent with single integrator dynamics
and extended in a provably correct way for realistic non-
holonomic agents using the Virtual Velocity Attractor (VVA)
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Fig. 1: Different values of ρ at different points on S which
is a circle in a 2D workspace

approach presented in [16]. Let O ∈ F2 be a scalar binary
field representing the HO in the workspace. O is 1 for
regions where obstacles are present and 0 otherwise. Let
ΓW represent the boundary of the workspace and ΓO be
the boundary of all the HO in the workspace. Finally, let
φ(p) be a scalar Potential Field (PF) at each point in the
workspace.

Generating a communication-aware path begins by solving
the Partial Differential Equation (PDE) as shown below

solve ∇(γ(p)∇φ(p)) = 0, p ∈ W (6)
s. t. φ(pS) = 1, φ(pG) = 0

∂φ

∂n
= 0, at p ∈ ΓW ,p ∈ ΓO

Then a sphere S of arbitrarily small radius is defined around
pS as shown in figure 1

S = {p| |p− pS | = εs} , 0 < εs � 1 (7)

A point p′S ∈ S is selected such that

ρ(p′S) ≥ ρ(piS ∈ S), i = 1, 2, · · · ,∞ (8)

where ρ, is defined as

ρ(p) = −∇φ(p)γ(p) (9)

Finally, the path is generated using the following gradient
dynamical system.

ṗ = −∇φ(p), p(0) = p′S (10)

The MBCAN algorithm is given in algorithm 1.

IV. ANALYSIS

Let the communication-aware ’effort’ be defined as:

γ |∇φ|2 (11)

γ at a point can be increased by increasing the transmission
power. The path-planner can only affect the velocity of the
agent. Thus, eq. 11 captures both the data-transmission and
motion energy of the agent at a point. Note that the Boundary

Algorithm 1 MBCAN

1: Get Workspace W .
2: Get SNR representation γ(p) for W .
3: Get HO representation O(p) for W .
4: Get start position pS of agent.
5: Get goal position pG.
6: GHPF(W ,η,O,pS ,pG). . Calling function GHPF
7: Find p′S using eq. 8
8: Solve ṗ =

∫∞
0
−∇φdt, p(0) = p′S for p(t).

9: function GHPF(W ,γ,O,pS ,pG)

10: Set
∂φ

∂n
= 0 at ΓW .

11: Set
∂φ

∂n
= 0 at ΓO.

12: Set φ(pS) = 1.
13: Set φ(pG) = 0.
14: Solve ∇ · (γ∇φ) = 0 for φ.
15: return φ.
16: end function

Value Problem (BVP) eq. 6 minimizes the Dirichlet Integral
[17], which has eq. 11 as its integrand.∫

Wφ

γ |∇φ|2 dWφ =

∞∑
i=1

∫ pG

pS

γ |∇φ|2 dqi (12)

Since the agent can choose from infinitely many trajectories,
qi, i = 1, 2, · · · ,∞, as shown in figure 2 eq. 12 is a sum

pS

pG

qi, i = 1, 2, · · · ,∞

p(t) =
∞∫
0

−∇φ(p(t))dt

Fig. 2: Infinitely possible trajectories

of line integrals that accumulate eq. 11 over each trajectory
qi. Any increase in path length of a trajectory will increase
the line integral value. Moreover locally at each point on the
trajectory if the SNR is high, eq. 11 can only be minimized if
|∇φ| is minimized. Thus, minimization of eq. 12 will assign
the shorted possible trajectories to regions with high γ.

In the following, we provide our propositions and their
proofs.

PROPOSITION 1: The magnitude of ρ, defined in eq. 9
is constant along the trajectory described by eq. 10 and is
equal to |ρ(p′S)|. Where, φ is obtained as a solution to eq. 6

Proof: It can be noted that eq. 6 implies that the divergence
of the term

γ(p)∇φ(p),p ∈ Wφ (13)
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is zero. In other words continuity of the product in eq. 13
is imposed locally at each point in φ. But the product in eq.
13 is represented by ρ(p) as described in eq. 9. Therefore,
|ρ(p(t))| will be constant for all t and since the starting point
is chosen as p′S (eq. 8), it can be concluded that

|ρ(p(t))| = constant = |ρ(p′S)| �

DEFINITION 3: Let T be a set of infinitely possible
trajectories, qi ∈ T , i = 1, 2, 3, · · · ,∞, an agent can take
from its starting position, pS ∈ Wφ, to a goal position,
pG ∈ Wφ, in its workspace as shown in figure 2. A trajectory
qi can be realized by choosing a starting orientation δi by
selecting a point on S (defined in eq. 7) then following the
gradient of φ at each point in the PF. Since the PF obtained as
a solution to (6) is conservative [18], using the fundamental
theorem of calculus, the line integral over any trajectory qi
will be given by

pG=qi(∞)∫
pS=qi(0)

−∇φ(qi) · ~dqi = φ(pS)− φ(pG) = 1 (14)

Using eq. 9, eq. 14 can be written as

1 =

pG∫
pS

ρ(qi)

γ(qi)
· ~dqi (15)

where ρ at the starting position can be written as

ρi = ρ(piS) =
∣∣ρ(piS)∣∣ δi|δi| (16)

Similarly at the starting position, dqi can be written as

~dqi = |q̇i|
δi
|δi|

dt (17)

Once a starting orientation is chosen by the agent, the factor
δi
|δi|

in equations 16 and 17 will be replaced by
∇φ
|∇φ|

. Using

eq. 16 and eq. 17 in eq. 15 we get

1 =

∞∫
0

|ρi|
δi
|δi|
γ

· |q̇i|
δi
|δi|

dt =

∞∫
0

|ρi| |q̇i|
γ

dt (18)

From proposition 1

|ρ(qi(t))| = constant, ∀t

This leads us to the definition of a functional, Υ, that returns
a scalar for any trajectory taken by the agent

Υ(qi(t)) =
1

|ρi|
=

∞∫
0

|q̇i|
η
dt =

∞∫
0

1

β(qi(t))
dt, i = 1, · · · ,∞

(19)
where β is the DFE (def. 1).

PROPOSITION 2: The trajectory p(t) obtained from the
gradient dynamical system in eq. 10.

ṗ = −∇φ(p), p(0) = p′S ∈ Wφ

where φ is obtained as a solution to eq. 6 minimizes the
functional, Υ defined in eq. 19, where the trajectory p(t) is
parameterized by time.

Proof: Since the starting orientation of the trajectory
obtained using eq. 10 for the HPF generated by eq. 6,
is chosen to be such that ρ (eq. 9) is maximum at that
orientation (eq. 8). Thus from the definition of Υ (eq. 19),
it will be the minimum of all possible trajectories qi.
It should be noted that eq. 8 is a direct consequence of
propostions 1 and 2.

The proofs for DCZ and HO avoidance can be found in
[19].

V. JOINT MOTION AND BEAMFORMING

Typically, in the wireless communication literature, the
user (robot in our case) is considered to have a fixed position
while beamforming is applied at the BS [20]. This is valid
for slow moving robots but for high speed agents, this could
lead to the beam being formed for positions that are no longer
occupied by the robot. Also, the future spatial positions of
the user are not known in traditional beamforming problems.
Using the MBCAN, the robot computes its position as a con-
tinuous trajectory, p(t), to the goal. This spatial information
of the robot can be used to predict the WCC, h(t) along the
trajectory [9]. Thus, a complex vector trajectory w(t) can
then be simultaneously computed to improve the SNR along
the trajectory of the agent.

Zero-Forcing (ZF) beamforming is known to give near
system capacity performance if the WCC is known [21].
Based on the predicted WCC, h(t), for the robot path, p(t),
we propose a ZF beamforming frame work as follows

w(t) =
h(t)(h(t)Hh(t))−1

‖h(t)(h(t)Hh(t))−1‖2
(20)

where ‖w(t) ∈ CnT×1‖2 = 1,∀t. The agent is equipped
with a single antenna and beamforming is only employed
at the BS. This is due to the reason that adding multiple
antennas requires an increase in the agent size. It also
increases energy consumption. Since we assume reciprocity
in the WCC in uplink and downlink, techniques like maximal
ratio combining can be used to obtain a similar gain at the
BS for data transmitted by the single antenna agent to the
BS.

VI. SIMULATION RESULTS

For the simulation, a 2-D 10m × 10m workspace was
assumed with a BS (nT = 4) located at (5, 0). The WCC gain
h was obtained by using the WINNER II channel models
[22] for an indoor environment (frequency 2.5GHz). SNR at
each point was computed using eq. 1 (with σ2 = 1).

Figure 3 shows the Communication-Aware Trajectory
(CAT) (red color) obtained using MBCAN superimposed on
the SNR and HO (blue color) representation in a cluttered
environment. The Communication-Blind Trajectory (CBT) is
obtained using HPF without SNR information. It can be seen
that the CAT avoids possible DCZ due to the shadowing
caused by the obstacles. It avoids all the HO and maintains
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Fig. 3: HPF based SNR-aware and -unaware trajectories in a complex environment
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Fig. 4: Magnitude of ρ at different points on S and functional
Υ due to the resulting trajectories.

a safe distance from the HO. It can be seen that without
any SNR knowledge, the agent is still able to reach the goal
and avoid the HO.The second figure shows the SNR at each
instant along the CAT and its mean are compared to when
the agent moves without any knowledge of the SNR. The
third figure shows trajectories obtained by choosing different
points on the starting circle S. It can be seen that all the
trajectories avoid the DCZ and HO. Thus if an agent is
bumped off course of the original trajectory, it would still be
able to navigate towards the goal while avoiding the DCZ
and HO.

Figure 4 shows CAT in an empty environment with a
BS obtained by choosing different starting points on S as
defined in eq. 7. The corresponding magnitude of ρ (eq.
9) and the functional Υ ()eq. 19 are) are plotted in the
second figure. It can be seen that the maximum value of
ρ corresponds to the minimum value of the Υ. Figure 5
compares the Probability Density Function (PDF) and Cumu-
lative Distribution Function (CDF) of the instantaneous SNR
and ZF beam-forming at each instant along the trajectory of
the CATs with trajectories that have no SNR knowledge.
The PDF was obtained by generating 4000 trajectories in
the cluttered environment (Figure 3), using random start and
goal position for each trajectory sample. It can be seen
that the PDF of the CAT, has a higher concentration at
higher SNRs. A more clear picture can be seen in CDF,
where it can be seen that the CATs significantly improves
the SNR especially lower SNR values. This is mainly due
to the avoidance of shadowed regions using MBCAN. The
difference is very small for trajectories that are in high
SNR regions compared to low SNR regions. At high SNRs
the performance of both blind and communication aware
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Fig. 5: PDF and CDF of instantaneous SNR at each point
along the trajectory

Fig. 6: Path for starting position in a DCZ

trajectories start to converge. It can also be seen that with
joint simultaneous ZF beamforming and MBCAN, there is a
further gain in the the instantaneous SNR of the CAT in the
whole SNR range. Finally, it can be seen that nearly 30% of
the instantaneous SNR of the CBT lie in a DCZ. However,
nearly 12% of instantaneous SNR for CAT and 9% for joint
ZF and MBCAN trajectories also lie in DCZs. This can be
explained by the scenario when pS and pG lie in a DCZ and
the robot has to move within the DCZ until it enters higher
SNR regions.

Figure 6 shows the trajectory obtained using MBCAN
when the starting position of the agent is in a DCZ. The SNR
(figure 7) is below the DCZ threshold εD (dashed green line
in the SNR plot) at the starting position but crosses εD and
remains above it until the path ends at the goal position.
It can be seen that the there is no random motion and the
path exit obtained initially exits the DCZ towards a region
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Fig. 8: Dynamic Trajectory and Control Signals of a DDR

with a better SNR and then moves towards the goal. The
trajectories obtained using eq. 10 for a φ can be realized for
a large class of agents using the VVA approach presented in
[16]. The trajectory of a DDR described by

[ẋ, ẏ, θ̇, v̇]T = [v cos θ, v sin θ, u, a]
T (21)

is shown in figure 8 for the cluttered environment above.

VII. CONCLUSION

This paper suggests a provably-correct, communication
aware navigation control system. The system can safely steer
an agent to a target zone while maintaining a good WCL
with a base station. The suggested procedure was able to
avoid shadow fades in cluttered environments. It significantly
improves the mean SNR along the trajectory. This paper
tackles the case where the SNR map is fully known. The
results obtained with this method will serve as the benchmark
for other methods with more realistic assumptions on SNR
knowledge. This method can be extended to generate the
navigation control signal based on on-line sensory-based
measurement of the signal strength and obstacle fields. Ele-
mentary results regarding the extension of this method to the
sensor-based case where the agent has no prior knowledge
ot he SNR are quite promising and will be published in
future works. We are currently working on developing the
theoretical framework for this case along with the necessary
proofs.
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