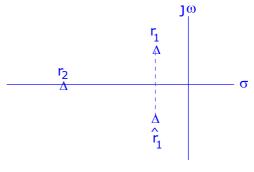
6. THE STABILITY OF LINEAR FEEDBACK SYSTEMS (CONT.)

THE RELATIVE STABILITY OF FEEDBACK CONTROL SYSTEM

The Routh-Hurwitz criterion ascertains the absolute stability of a system by determining whether any roots of the characteristic equation Lies in the right half of the s-plane. However, if the system satisfies the Routh-Hurwitz criterion and is absolutely stable, it is desirable to determine the relative stability; The relative stability is measured by the relative part of each root. Thus root r_2

is relatively more stable than r_1 , \hat{r}_1 as shown.

The Routh-Hurwitz criterion can be extended to ascertain relative stability. This can be accomplished by utilizing a change of variable, which shifts the s-plane axis in order to utilize the Routh-Hurwitz criterion.



Example

Determine the relative stability of the following characteristic equation $s^3 + 4s^2 + 6s + 4 = 0$

Solution

As a first step, let $s_n = s + 2$. Applying the Routh-Hurwitz criterion will indicate if any of the roots of the characteristic equation is to the right of the line s=-2.

 $(s_n - 2)^3 + 4(s_n - 2)^2 + 6(s_n - 2) + 4 = 0 \Rightarrow s_n^3 - 2s_n^2 + 2s_n = 0$ The necessary conditions are not satisfied.

Let us try $s_n = s + 1$. We obtain $(s_n - 1)^3 + 4(s_n - 1)^2 + 6(s_n - 1) + 4 = 0 \implies s_n^3 + s_n^2 + s_n + 1 = 0$

The Routh Array for this C.E. is:

S ³	1	1	
s ²	1	1	$U(s) = s^2 + 1$
S	<mark>θ ⇒ 2</mark>	θ ⇒ 0	$\frac{dU(s)}{ds} = 2s + 0$
s ⁰	1	0	0

There are no sign change in the first column. Hence all the roots have negative real parts less than -1except for a imaginary pair on the line s = -1, which are the roots of the auxiliary equation: $s_n^2 + 1 = 0 \Rightarrow s_n = \pm j \Rightarrow s = -1 \pm j$ Using MATLAB, one can find the actual roots of the C.E. : -1, $-1 \pm j$

THE STABILITY OF STATE VARIABLE SYSTEMS

Consider the transfer function:

 $T(s) = \frac{Y(s)}{U(s)} = \frac{s^2 + 7s + 2}{s^3 + 9s^2 + 26s + 24}$

The CCF state variable representation is

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -24 & -26 & -9 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u \quad ; \ y = \begin{bmatrix} 2 & 7 & 1 \end{bmatrix} \mathbf{x}$$
The relevant SFG $u = \begin{bmatrix} 1 & M & s^{-1} & x_3 & s^{-1} & s^{-1} & Ms^{-3} \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} M & s^{-1} & x_3 & s^{-1} & s^{-1} & Ms^{-3} \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & M & s^{-1} & x_3 & s^{-1} & s^{-1} & Ms^{-3} \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & M & s^{-1} & x_3 & s^{-1} & s^{-1} & Ms^{-3} \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & M & s^{-1} & x_3 & s^{-1} & s^{-1} & Ms^{-3} \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & M & s^{-1} & x_3 & s^{-1} & s^{-1} & Ms^{-3} \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & M & s^{-1} & x_3 & s^{-1} &$

- The characteristic equation can be obtained from the denominator of the transfer function T(s) $q(s) = s^3 + 9s^2 + 26s + 24 = 0$ or
- By evaluating the determinant $\Delta(s)$ of the SFG $\Delta(s) = 1 + 9s^{-1} + 26s^{-2} + 24s^{-3} = 0 \rightarrow s^3 + 9s^2 + 26s + 24 = 0 \text{ or}$
- Directly from the state equations by evaluating the determinant

$$|\lambda I - A| = 0 \Rightarrow \begin{bmatrix} \lambda & -1 & 0 \\ 0 & \lambda & -1 \\ 24 & 26 & \lambda + 9 \end{bmatrix} = 0 \Rightarrow \lambda [\lambda(\lambda + 9) + 26] + 24 = 0$$

= $\lambda^3 + 9\lambda^2 + 26\lambda + 24 = 0$
Note: Any other state variable
REPRESENTATIONS (e.g. OCF) will
LEAD TO THE SAME CHARACTERISTIC
EQUATION. TRY IT!

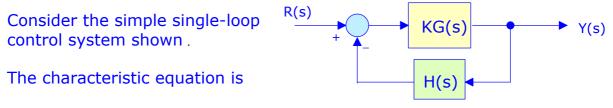
7. THE ROOT LOCUS METHOD

INTRODUCTION

The location of the closed-loop roots of the characteristic equation in the s-plane determines the relative stability and the transient response of the closed-loop control system. Therefore it is important to determine how the roots of the characteristic equation of a given system travel in the s-plane as the parameters are varied.

The root locus method, introduced by Evans in 1948, is a graphical method for sketching the locus of the roots in the s-plane as a parameter is varied.

THE ROOT LOCUS CONCEPT



1 + KG(s)H(s) = 0

where K is a variable parameter.

The characteristic roots of the system must satisfy the characteristic equation. Because *s* is a complex variable, the characteristic equation may be rewritten in polar form as

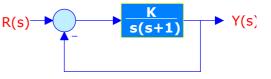
 $|KG(s)H(s)| \angle G(s)H(s) = -1 + j0$ and therefore it is necessary that

|KG(s)H(s)| = 1 [Magnitude Condition]

 $\angle G(s)H(s) = -180^{\circ}$ [Angle Condition]

Before presenting the root locus method and in order to give a clear idea of what a root locus plot looks like, we shall consider the system shown.

We shall obtain the characteristic equation analytically in terms of K and then vary K from 0 to ∞ . It should be noted that this is not the proper way to construct the root locus plot. The proper way is by applying the general rules to be presented later.



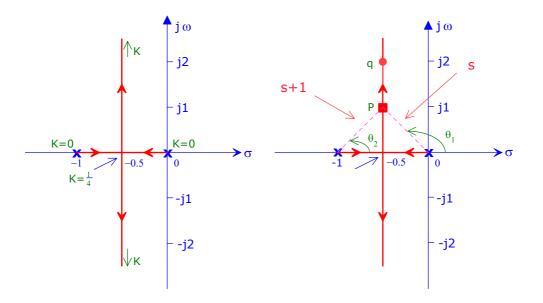
Lecture 21

[If an analytical solution for the characteristic roots can be found easily, there is no need for the root locus method].

The characteristic equation representing this system is $s^2 + s + K = 0$ The roots are $s = -\frac{1}{2} \pm j\frac{1}{2}\sqrt{1-4K}$

- 1. The roots of the C.E. (i.e. closed-loop poles) corresponding to K = 0 are the same as the poles of the open-loop transfer function G(s)H(s).
- 2. As the value of *K* is increased from 0 to $\frac{1}{4}$, the roots of the C.E. move toward point $(-\frac{1}{2}, 0)$. For values of $0 < K < \frac{1}{4}$, the roots of the C.E. are on the real axis. This corresponds to an overdamped system.
- 3. At $K = \frac{1}{4}$, the two characteristic roots unite. This corresponds to the case of a critically damped system.
- 4. As the value of *K* is increased from $\frac{1}{4}$, the characteristic roots of the C.E. break away from the real axis, becoming complex, and since the real part of the closed-loop poles (characteristic roots) is constant for $K > \frac{1}{4}$, the closed-loop poles move along the line $s = -\frac{1}{2}$. Hence, for $K > \frac{1}{4}$, the system becomes underdamped.

The loci of the characteristic roots are plotted in the figure for all values of \boldsymbol{K}



How to show that any point is on the root locus? Use the angle condition Consider point P on the root locus. $\angle G(s)H(s) = \angle \frac{K}{s(s+1)} = -[\angle s + \angle s + 1)] = -[\theta_1 + \theta_2] = always -180^{\circ}$ Hence, the point P is on the root locus.

Lecture 21

29-10-2003

How to find the gain at a specified point?

Use the magnitude condition

Consider point q on the root locus. It is required to find the gain at that point.

The coordinates of point q are : -0.5 + j2

$$\left|\frac{K}{s(s+1)}\right|_{s=-0.5+j2} = \left|\frac{K}{(-0.5+j2)(-0.5+j2+1)}\right| = 1 \quad ; \to K = \frac{17}{4}$$

From the root locus plot, we clearly see the effects of changes in the value of K on the transient-response behavior of the second-order system.

- An increase in the value of K will decrease the damping ratio ζ , resulting in an increase of the overshoot of the response.
- An increase in the value of *K* will also result in increases in the damped and undamped frequencies.
- The system is always stable no matter how much *K* is increased.

Skill-Assessment Problem

Find the gain and the characteristic roots if the closed-loop response is to have a damping ratio of $\zeta = 0.707$

Answer: $K = 0.5, -0.5 \pm j0.5$