3. STATE VARIABLE MODELS (cont.)
ALTERNATIVE SIGNAL-FLOow GRAPH MODELS (CONT.)

Diagonal Form

Consider the transfer function:

Y(s) _ 30(s+1) a 30(s+1)
R(S) ~ s3+952+265+24 = (s+5)(s+2)(s+3)

It is clear that the transient response of the system has three modes,
These modes are indicated by the partial fraction expansion as

Y(s) _ ki L_ka ks
R(s) (s+5) (s+2) (s+3)

The coefficients k1, k2,and ks are called residues and are evaluated by

multiplying through by the denominator factor of (s+53;?s(i;)1()s+3)
corresponding to k; and setting s equal to the root.
Evaluating k1, k2,and ks we have
T 30(s+1) _
ki = _(s+5) G 5)E+2)(5+3) )| s 20
- 1 Y(s) _ _-20 -10 30
1 =
ko = (5+2)(s+5:§2g(i;)()5+3) 2:—10 R(S) (s+5)+(s+2)+(s+3)
L i
T 30(s+1) ] a
1 st X1 -20

y
D)
\4

R(s) Y(s)
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Using the above SFG to derive the set of first-order differential equations,
we obtain:
]u(t)

).(1 -50 O X1
).(2 = 0 20 X2 | T
X3 0O 0 -3 X3

X1
y=[ -20 -10 30 ]| x
X3

(S =

THE TRANSFER FUNCTION FROM STATE EQUATIONS

Given the state variable equations, we can obtain the transfer function
using a signal-flow graph model and applying Mason’s rule. We will now
derive a formula for the transfer function of a single-input, single-output
system.

Given

X=Ax+Bu ; y=Cx [Dis assumed =0]

The Laplace transforms of the above equations are

sX(s) =AX(s) +BU(s) ; Y(s) = CX(s) Note that we do not include initial
conditions, since we seek the
(sI-A)X(s) =BU(s) transfer function.

X(s) = (sI-A)"LBU(s)

Y(s) = CX(s) = C(sI-A)1BU(s)

Y(s) = Cd(s)BU(s)

Therefore the transfer function is G(s) =Cd(s)B

If D+ 0, the transfer function is G(s) = C(sI-A)1B+D=Cd(s)B+D

Example

Determine the transfer function of the system described by:

. -1
e
X 1 -R

T It*

{xl }J,[ % ]u(t); yty=[ 0 R ][2 ]
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Solution

° % s % R.. 1
;A(S):|SI_A|: -1 R :SZ+T5.|.E
T(SJT)

[sI-A]=
TR 6D

1

- RY -1
Cfer A1-1_ C 1 (5”?)?
d(s) =[sI-A] -{ (5+R) [ .

A(s) 1

Then the transfer function is

R 1

Y(s) (S+) 1

toniss 1 < | §]
R
Y(S): LC
e

EVALUATION OF THE STATE TRANSITION MATRIX

For higher order systems, evaluating ®(s) using the formula
®(s) =[sI-Altis generally inconvenient. The usefulness of the signal-flow
graph state model for obtaining the state transition matrix is highlighted.

Consider the system Xx=Ax+Bu ;
The solution for the above system, when u(t) =0, is
X(t) = d(t)x(0)

Taking the Laplace transformation of the above equation, we have
X(s) = d(s)x(0)

Therefore we can evaluate the Laplace transform of the transition matrix
from the signal-flow graph by determining the relation between a state
variable Xj(s) and the state initial conditions [x1(0),x2(0)...x»(0)], using
Mason’s gain formula.

Thus for a second-order system, we would have

X1(S) = 911(S)x1(0) + p12(S)x2(0)
X2(S) = 921(8)x1(0) + 922(5)x2(0)

Note that all the elements of the state transition Matrix ¢;(s), can be
obtained by evaluating the individual relationships between Xj(s) and x;(0)
from the state model flow graph.
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How to show Initial Conditions on the SFG

Consider the equation x1 =x2 ; x1(0) % (0)
Taking Laplace transform yields 1
SX1(8) —x1(0) =X2(s) sl

The above equation becomes
X1(8) =s1x1(0)+s71X2(s), which is algebraic
and can be represented by a signal flow
graph as shown.

S;l

X(5)O X,(s)

Note that the initial condition of the state xi1 appears as an input to the
node representing the state with a branch gain of s™L.

Example

Determine ®(s) for the system given by A:l 2 :§ 1,B:l 3 1,C:[0 3]

using two different methods.

Solution

(1)

S 2
-1 (s+3)

=52+35+2

[sI-A] :[ S ersy ] S A(S) = IsT-Al =

-1
CD(S)=[SI—A]‘1:l5 2 ] #{(sw)—z]

-1 (s+3) | ~(s2+3s+2) 1 s
(2) Draw a signal-flow graph showing all initial conditions
x,(0) x4(0)
1 1
S S

VU')‘l—l-

1
1 s 3
U(s) O O O O > O VO(S)
Xl(S) 3 Xz(s)
-2

To obtain ®(s), set U(s)=0, and redraw the SFG without the input and
output nodes because they are not involved in the evaluation of @(s).

Lecture 13 08-10-2003 4



(n“—s

XZ(S)

Recall that

X1(S) = 911(S)x1(0) + p12(5)x2(0)
X2(S) = 021(S)x1(0) + 922(5)x2(0)

_| 911(S) »12()
Where CI)(S)_[ 921(S) 922(S) }

Using Mason’s gain formula, we obtain

= O _ (435 g43
P10 = X1(0) | 00  1+351+252 ~ (s2+35+2)

= 5O _ teasy -2
#1280 = %2(0) |4 00  1+351+252 ~ (s2+35+2)

€)= X2(S) _ s _ 1
#2150 = X1(0) 4,00  1+3s1+252 ~ (s2+35+2)

D SO (€ N
b2z x2(0) |4, 00 1+351+252 "~ (s2+35+2)

Hence

s+3 -2
| (s2+3s+2) (s2+3s+2) Same answer as (1)
(s) = 1 3

(s2+3s+2) (s2+3s+2)
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Comments

* We can now find ®(t) if we wish

et—p2t e t+2e 2t
O(t)=<" ld)(s):{ ((ei_ee_n)) ((_ ee_t :2 ee_zt)) }

* We can also find the states and the output for any initial conditions.
For example when x1(0) =x,(0) = 1and u(t) =0, we have

lxl(t) ]:q)(t)l x1(0) 1:[ (2et-e2t) (-2et+2e2t) H 1 1:{ e2t ]

X2(0) x2(0) (et-e2) (-et+2e7) || 1 e
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