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1) Solution:
a) Derive the transfer function
Method 1 (Laplace Transform approach)
We have

X, (t) = =3x,(t) + X, (t) + u(t),
X, (t) = =2Xx, (t) + 2u(t),
y(t) = x, (t) + x, (t).

Taking the Laplace transforms of the above equations we get
[s +3]X,(s) = X, (s) +U (s),
[s +2]X,(s) = 2U (s)

2

= X,(9) = S+2U(s).

Therefore, we have
U(s) + U (s),
(s+3)(s+2) s+3

= X, (s) = —F—y ).
(s+3)(s+2)

Xl(s) =

Hence

_ s+4 2
Y(8) = Xy(s) + X,(s) = (5+3)(s+2)u(s)+s+2

Y(s) (3s+10)
Us) (s+3)(s+2)

Method 2 (State Space approach)

The transfer function of the system can also be computed by using the formula given by

Ys) C(sl —A)'B+D.
U(s)

In this problem, we have



c=[ 1]
D=0.
Therefore, we have

TR N I
w7 G

_[1 1] 1 S+2 1 1
- (s+3)(s+2)| 0 s+3|2]

35410
C (5+3)(s+2)

This coincides with the answer from method 1.
(b) The poles of the system are at —3 and —2. Since the poles of the system lie in the left

half plane, the given system is stable.

2) Solution:
We first notice that
LIy(®)]=Y(s) = H(s)L[(u(t)] = H (5)%
= H(s) =sY(s)
Hence

5 2 3} 5 4s+15

H(s) = s{— - -
S S+3 s+6 s(s+3)(s+6)
Thus the system has three poles at s1=0, s2=-3, and s3=-6,

one zero located at s=-15/4.



EE 380

3) Solution:

Step Responsze
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(a) The transfer function is given by:

c_Y() _ k ~ k
CR(S)  (S+4)(s+b)+KK  s?+(4+b)s+4b+KK

1)
Since R(s) = 1/ s (unit step input), the steady state value of the output is:

$S = lim(TF) =— X

2
$—0 4b + kK @)

From the figure for the step response, SS = 1, so, equation (2) becomes:

k
4h + kK

Comparing equation (1) with the standard expression for the transfer function of a second

=1=k =4b+kK (3)

order system gives

wF =k =4b+kK and  2fw, =4+b (4)
From the figure for the step response, the peak time is given by:
tp=0.49s
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The maximum overshoot is:

1.23-1

Mp =0.23

The times for amplitude values of 10% and 90% SS can be obtained from the figure are
approximately 0.08s and 0.355 s, respectively, so the rise time is:

tr=0.282 - 0.0687 = 0.2133 s

With the maximum overshoot we get the damping factor:

InM
£=- e o 0B

J7 M )2 fr? +(n0.23)?

The damped frequency is related to the peak time, the damping factor, and the natural
frequency by:
T T T
10) =—:a)n\/1—§2 S0, =—F>0, =
Tt t,1-¢&2 0.49\1-0.42372

With equations (4) we obtain kand b:

K = w? = (7.074)? =50 radzz

=7.074 rad/s

b=2fw, —4=2

K=1-2_1-8 08
k 50

(b) On the figure for the step response, point (A) gives the position where the amplitude
reachs 99% of SS, therefore the settling time for 1% criterion is:
ts=1.23s
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Problem 2l o C 0y Real Imaginary
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#3b 4 20 0.447 447 -2 4.00
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E5.2

(a) The closed-loop transfer function is

Y(s)  G(s) 100 100

R(s) 1+G(s) (s+2)(s+5 1100 s+ 2wns +ws

T(s) =

The steady-state error is given by

A
€ss = TKP ;
where R(s) = A/s and
, 100
K, = ;E,IEG{SJ =10 = 10 .
Therefore,
o A
25 T 11 -

(b) The closed-loop system is a second-order system with natural fre-
quency

wy = V110 ,

and damping ratio

7

24110

(= —0.334 .

Since the steady-state value of the output is 0.909, we must modify the
percent overshoot formula which implicitly assumes that the steady-
state value is 1. This requires that we scale the formula by 0.909. The
percent overshoot is thus computed to be

P.O. = 0.909(100e ™/V1-¢") — 29% .



E5.5 (a)

The closed-loop transfer function is

_Y(s) G(s) 100
"~ R(s) 1+GH(s) s2+100Ks+ 100"

T(s)

where H(s) = 1 + Ks and G(s) = 100/s%. The steady-state error is
computed as follows:

. s A
Ezs = ;E}ES[R[S] -Y(s ] = }E%S[l _T(S}]ST

100
A
= lim |1 i <

- s =KA.
s—0 1+ 28(1 + Ks)

From the closed-loop transfer function, T'(s), we determine that w, =
10 and

100K B

We want to choose K so that the system is ecritically damped, or
¢ = 1.0. Thus,

Kzl:D.‘ED.
5

The closed-loop system has no zeros and the poles are at

1.0 = —50K +10v/25K2 — 1.

The percent overshoot to a step input is

—Sn K

P.O. = 100eVI-2KT  for 0< K < 0.2

and PO. =0 for K = 0.2,



E5.9 The second-order closed-loop transfer function is given by
w2
o
From the percent overshoot specification, we determine that
P.O. < 5% implies ¢ = 0.69.
From the settling time specification, we find that
T, <4 implies w,(>1.

And finally, from the peak time specification we have

Tp <1 implies wpy/1—-(2>m.

The constraints imposed on ¢ and w, by the performance specifications
define the permissible area for the poles of T'(s), as shown in Figure E5.9.

Im(s)

Wn 1

= Re(s)

Wo U 1zl=-p

FIGURE E5.9
Permissible area for poles of T'(s).



E5.17 The output is given by

G(s)

R(s) .

When K = 1, the steady-state error is
Egs — D.E
which implies that

lim sY(s) = 0.8 .
3—0

Since we want eg; = 0, it follows that

S]JE:ESY{S} =1,

08K =1.

Therefore, K = 1.25.

P5.2 (a) The settling time specification

1
T.g:_‘::u.ﬁ

Cwn

is used to determine that (w, > 6.67. The P.O. < 20% requirement
is used to determine

¢ = 0.45 which implies # < 63°
and the P.0O. > 10% requirement is used to determine
¢ = 0.60 which implies # = 53°,

since cos# = (. The desired region for the poles is shown in Fig-
ure P5.2.
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FIGURE P5.2

Desired region for pole placement.

(b) The third root should be at least 10 times farther in the left half-
plane, so

Ira| = 10|¢wy| = 66.7 .

(c) We select the third pole such that rg3 = —66.7. Then, with ¢ = 0.45
and (w, = 6.67, we determine that w, = 14.8. So, the closed-loop
transfer function is

66.7(219.7)

T(s) = .
()= 5T 667( + 1335 7 219.7) °

where the gain K = (66.7)(219.7) is chosen so that the steady-state

tracking error due to a step input is zero. Then,

e _G)
T&=1ram
or
_ T(s)
“E) =170



P5.10 (a) The armature controlled DC motorblock diagram is shown in Fig-

ure P5.10.
amplifier
Ris) —s= ——= K - Km - = Vs)
(s) + | Ra.tL.s - Js+b
Kb |
back emf
FIGURE P5.10
Armature controlled DC motor block diagram.
(b) The closed-loop transfer funetion is
w(s KG(s)
T(s) = (s) _ ! [ ) !
R(s) 1+ KKpG(s)
where
- K,
G(s) = - - .
S = R F Los) (s £ 8)
Thus,
K
T(s)=

(c)

2425+ 1+ K7
where B, = L, = J = b= Ky = K,;, = 1. The steady-state tracking
error is
€55 = lim s(R(s) — Y (s)) = lim s (—) (1-T(s))
s—0 s—0 k]
. K A
—AQ-TO)=[1-——— ) =——.
-1 -(1-55%) -

For a percent overshoot of 15%, we determine that ¢ = 0.5. From
our characteristic polynomial we have 2{w, = 2 and w, = v'1 + K.
Solving for wy, vields wy, = 2, thus K = 3.

AP5.7T The performance is summarized in Table AP5.7 and shown in graphical
form in Fig. AP5.7T.

K Estimated Percent Overshoot Actual Percent Overshoot
1000 B.B % B.5 %
2000 321 % 30.2 %
3000 50.0 % 46.6 %
4000 64.4 % 50.4 %
5000 6.4 % 69.9 %
TABLE AP5.7 Performance summary.
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FIGURE AP5.7
Percent overshoot versus K.
The closed-loop transfer function is

100K
T(s) = _ . - .
s(s+50)(s + 100) + 100K

The impact of the third pole is more evident as K gets larger as the
estimated and actual percent overshoot deviate in the range 0.3% at K =
1000 to 6.5% at K = 5000.
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