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where, in British units,

J = inertia (oz-in.-sec®) L = screw lead (in.)
W = weight (0z) 2 =/gravitationa1 force (386.4 in./sec?)

4-3-4 Gear Trains, Levers, and Timing Belts

A gear train, lever, or timing belt over a pulley is a mechanical device that transmits
energy from one part of the system to another in such a way that force, torque, speed,
and displacement may be altered. These devices can also be regarded as matching
devices used to attain maximum power transfer. Two gears are shown coupled together
in Fig. 4-12. The inertia and friction of the gears are neglected in the ideal case
considered.

The relationships between the torques, T, and 7, angular displacement &, and
f,, and the teeth numbers N, and N, of the gear train are derived from the following
facts:

1. The number of teeth on the surface of the gears is proportional to the radii
r\ and r, of the gears; that is,

|’ N, = ;N ;{ (4-32)

2. The distance traveled along the surface of each gear is the same. Thus

[611‘1 = Oy | (4-33)

3. The work done by one gear is equal to that of the other since there are
assumed to be no losses. Thus

(4-34)

Figure 4-12 Gear train.
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quantities are obtained when reflecting from gear 2 to gear 1

Inertia: adl 2 Angular displau:emf:nt:IXl &,
nertia. ( N) Js g N,
Ny\? AL
Viscous friction coefficient: (—*) B, Angular velocity: E_z 3
oL 2 Coulomb fricti Mg, 2
Torgue: —jTg oulomb friction torque: N, 2 lwzl

Similarly, gear parameters and variables can be reflected from gear 1 to gear 2 simply
by interchanging the subscripts in the expressions above.

If a torsional spring effect is present, the spring constant is also multiplied by
(N,/N,)* in reflecting from gear 2 to gear 1. Now substituting Eq. (4-38) into Eq. (4-37),

we get
T(f) = ka?%z(ﬂ + By, 9%9 + T (4-39)

fwhere

e T 3 _
Joo=Jy + (A—’l)l 5o (4-40)
Nof |

B, = B, + (%2)2 B, (4-41)
T, F,ﬂﬁ + % . lzzl (4-42)

mmmsmmmensa Given a load that has inertia 0.05 oz-in.-sec* and Coulomb friction forque 2 oz-in., find the
Example inertia and frictiona) torque reflected through a 1: 5 gear train (N,/N, = 1/5, with N, on the load
4-3 side). The reflected inertia on the side of N, is (3 X 0.05 = 0.002 oz-in.-sec’. The reflected
. Coulomb friction is § X 2 = 0.4 oz-in. A

Timing belts and chain drives serve the same purpose as the gear train except
that they allow the transfer of energy over a longer distance without using an excessive
number of gears. Figure 4-14 shows the diagram of a belt or chain drive between two
pulleys. Assuming that there is no slippage between the belt and the pulleys, it is easy
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of the state variables and the nput force f(r), we have:

dvit
Force On MAass: M —%({—) = —Bu(f) — filth + f{D (4-48)
1 dfi{8)
; ne: LPW _ (4-49)
Velocity of spring X dt v(t)
The state equations are obtained by dividing both sides of Eq. (4-48) by M and multiplying Eq.
{4-49) by K. ' '
A The state This simple example illustrates that the state equation and state variables of a dynamic

variables and  system are not umgue. The transfer function between Y(s) and F (s) is obtained by taking the

state equations | aplace transform on both sides of Eq. (4-44) with zero initial conditions:
of a dynamic

systern are not
unique. Y(s) = 1
: F(s) Ms*+Bs+ K

(4-50)

The same result is obtained by applying the gain formula to Fig. 4-18(c). A

semwswemmzsse® A< another example of writing the dynamic equations of a mechanical system with translational
Example motion, consider the system shown in Fig. 4-19(a). Since the spring is deformed when it is
4-5 subject to a force f(r), two displacements, y, and y,, must be assigned to the endpoints of the

spring. The free-body diagrams of the system are shown in Fig. 4-19(b). The force equations
are

£ = KIn(®) = 0] @51
.ﬂﬂm—wﬁH=Mw39+B@%9 (4-52)
These equations are rearranged as
PO = 340) + O (4-53)
DD _ BP0~ 20 54

By using the last two equations, the state diagram of the system is drawn in Fig. 4-19(c}.

Thfa state variables are defined as x,(f) = y.(f) and x,(f) = dy,()/dt. The state equations are
written directly from the state diagram:

dx(f)
“&é— = x,(9) (4-55)
dx,(1) — B

B .1
ar sz(t) Mf(t) (4-56)

L
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Figure 4-19 Mechanical system for Example 4-5. {a} Mass—
spring—friction system. (b} Free-body diagram. (c) State di-
agram.

As an alternative, we can assign the velocity v(1) of the mass M as one state variable and
the force £,(r) on the spring as the other state variable. We have

@@ _ B, o1 - _
o Mv(t) + Mﬂ(r) 4-57
ko) = f(n) (4-58)

One may wonder why there is only one state equation in Eq. (4-48), whereas there are
two state variables in v(f) and f{z). The two state equations of Egs. (4-55) and (4-56) clearly
show that the system is of the second order. The situation is better explained by referring to the
analogous electric network of the system shown in Fig. 4-20. Although the network has two
energy-storage elements in L and C,; and thus there should be two state variables, the voltage
across the capacitance, ¢.(t), in this case is redundant, since it is equal to the applied veoltage .
e(f). Equations (4-57) and (4-56) can provide only the solutions to the ve}ocity of M, v(?), which




