KING FAHD UNIVERSITY OF PETROLEUM & MINERALS ELECTRICAL ENGINEERING DEPARTMENT

EE380 [081]	SEC#	Quiz # 7
Name: Key	ID:	Grade:

1) A system has the characteristic equation

$$q(s) = s^3 + 4Ks^2 + (5+K)s + 10 = 0.$$

The range of K for a stable system is:

- C K<0.46
- \Box 0 < K < 0.46
- Unstable for all K

Routh Table:

$$S = 1$$
 $S = 4K$
 $S = 0$
 $S = 0$
 $S = 0$

$$a = \frac{4K(K+5)-10}{4K} > 0$$

$$\frac{4K^{2} + 20K - 10 > 0}{K^{2} + 5K - 2.5 > 0}$$

$$\frac{(K - 0.46)(K + 5.435) > 0}{-5.43}$$

Utilizing the Routh-Hurwitz criterion, determine whether the following polynomials are stable or unstable:

$$p_1(s) = s^2 + 10s + 5 = 0$$

$$p_2(s) = s^4 + s^3 + 5s^2 + 20s + 10 = 0.$$

- \square $p_1(s)$ is stable, p2(s) is stable
- $p_1(s)$ is unstable, $p_2(s)$ is unstable
- $p_1(s)$ is unstable, $p_2(s)$ is stable
- $p_1(s)$ is stable, p2(s) is unstable

$$\stackrel{?}{s}$$
 10 0 \Rightarrow P₁(s) is stable $\stackrel{?}{s}$ 5

$$P_{2}(s) = S + S_{+} + S_{+} + S_{+} + 20S + 10$$

$$S^{4} + 1 + 5 + 10$$

$$S^{3} + 1 + 20 + 0 \Rightarrow P_{2}(s) \text{ is unstable}$$

$$S^{2} + \frac{310}{15} + 0$$

$$S^{3} + \frac{310}{15} + 0$$

$$S^{5} + 10$$

3)	A marginally stable system has poles on the <i>jw</i> -axis.
	True Palse
4)	A system is stable if all poles lie in the right half-plane. True False
5)	The Routh-Hurwitz criterion is a necessary and sufficient criterion for determining the stability of linear systems. True False