KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

ELECTRICAL ENGINEERING DEPARTMENT

EE-463-1 Project

Semester (011)

The line-data and bus-data of a 9-bus system are given below.

Line-Data

From- To	Impedance (per unit)	Total Line Charging (per unit)	Tap Position (per unit)	MVA Rating
1-4	j0.0576		1.02	150
2-7	j0.00625			200
3-9	j0.0586		1.01	150
4-5	0.01 + j0.085	j0.088*2		100
4-6	0.017 + j0.092	j0.079*2		50
5-7	0.032 + j0.161	j0.153*2		150
7-8	0.0085 + j0.072	j0.1045*2		100
8-9	0.0119 + j0.1008	j0.1045*2		75
6-9	0.039 + j0.17	j0.179		100

The impedances are on 100 MVA base.

Bus-Data							
	Bus Voltage (per unit)	_	$\mathbf{Q}_{\mathbf{G}}$	P _L (MW)	$\begin{array}{c} Q_L \\ (MVAR \end{array}$	$\begin{array}{c} Q_{min} \\ (MVAR \end{array}$	Q _{max} (MVAR
	_		(MVAR))))
1	1.04+j0.0	-	-				
2	1.025	163	-				60
3	1.025	85	0				20
5	-			125	50		
6	-			90	30		
8				100	35		

Use the Power World Simulation Package (the latest version can be downloaded from www.powerworld.com) to simulate the above system indicating the following:

- The single line diagram of the system including the circuit breaker at both ends of every line.
- The voltage (p.u.), generation (MW and MVAR), and load (MW and MVAR) for each bus, where applicable.
- The line-flows (MW and MVAR) at both ends of every line.
- The line-flow pie chart at both ends of every line.

Perform the following tasks:

- Run your **own case**** for a simulation time of 2 hours (7200 seconds) and simulation speedup of 60 seconds.
- Use the load variation graph to simulate a varying load from 100% (using the base case) to 200%.
- Show the animated flows on the single-line diagram.
- Enforce the line overloads to check the line limits.
- Detect and record any system's abnormality during the simulation time (e.g., bus voltages outside 5% range of the nominal values, overloaded lines, ...etc.).

Introduce at least two different remedies for the problems detected earlier to ensure a normal operation of the system during the simulation time.

Write a formal typed-report showing the following items:

- The single-line diagram of the original case.
- The single-line diagram of the modified cases (the two solutions).
- Statement on the problems faced during the simulation time.
- Statements on the suggested solutions with clear explanation and justification.
- Comparison and discussion of the best solution.

Due dates:

November 5, 2000 The single-line diagram of the original case. (10%)

November 24, 2000 The single-line diagram of the modified cases. (20%)

December 3, 2000 Final Report including the above items. (60%)

December 29-31, 2000 Oral Exam. (10%)

** Your own case is as follows:

	Line-resistance	Line-	MVA Rating	$P_L + j Q_L$
		reactance		
odd	x 1.4	x 1.2	x 1.(ser# + 9)	same
even	x 1.5	x 1.1	same	x 1.(ser# + 9)