KING FAHD UNIVERSITY OF PETROLEUM & MINERALS ELECTRICAL ENGINEERING DEPARTMENT

EE-463 Project

Semester (131)

Dr. Ibrahim O. Habiballah

Part I: Load-Flow Studies

The line-data and bus-data of the IEEE 14-bus system are given below on a 100 MVA base. The minimum and maximum limits of voltage magnitude and phase angle are considered to be 0.95p.u. to 1.05p.u. and -45° to $+45^{\circ}$ respectively.

Line	From	To	Line imped	ance $(p.u.)$	Half line charging	MVA	
number	bus	bus	Resistance	Reactance	susceptance $(p.u.)$	rating	
1	1	2	0.01938	0.05917	0.02640	120	
2	1	5	0.05403	0.22304	0.02190	65	
3	2	3	0.04699	0.19797	0.01870	36	
4	2	4	0.05811	0.17632	0.02460	65	
5	2	5	0.05695	0.17388	0.01700	50	
6	3	4	0.06701	0.17103	0.01730	65	
7	4	5	0.01335	0.04211	0.00640	45	
8	4	7	0	0.20912	0	55	
9	4	9	0	0.55618	0	32	
10	5	6	0	0.25202	0	45	
11	6	11	0.09498	0.1989	0	18	
12	6	12	0.12291	0.25581	0	32	
13	6	13	0.06615	0.13027	0	32	
14	7	8	0	0.17615	0	32	
15	7	9	0	0 0.11001		32	
16	9	10	0.03181	0.0845	0	32	
17	9	14	0.12711	0.27038	0	32	
18	10	11	0.08205	0.19207	0	12	
19	12	13	0.22092	0.19988	0	12	
20	13	14	0.17093	0.34802	0	12	

Transformer Tap Setting Data of IEEE 14-Bus System

		-
From bus	To bus	Tap setting value $(p.u.)$
4	7	0.978
4	9	0.969
5	6	0.932

		_	_			-	-	-		-	-						
ctive	Reactive power limits		Q_{\min} (MVAR) Q_{\max} (MVAR.)	10	50.0	40.0	1	1	I	I	I	I	I	I	I	I	I
Rea			$Q_{\min}(MVAR)$	0	-42.0	23.4	I	I	I	I	I	I	I	I	I	I	1
Load	Reactive	power	(MVAR)	0	12.7	19.1	-3.9	1.6	7.5	0	0	16.6	5.8	1.8	1.6	5.8	5.0
Γ	Real	power	(MM)	0	21.7	94.2	47.8	7.6	11.2	0	0	29.5	9.0	3.5	6.1	13.8	14.9
Generation	Reactive	power	(MVAR)	-16.9	0	0	0	0	0	0	0	0	0	0	0	0	0
Gene	Real	power	(MM)	114.17	40.00	0	0	0	0	0	0	0	0	0	0	0	0
tage	Phase	angle	(degree)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bus voltage		Magnitude	(p.u.)	1.060	1.045	1.010	1	1	1	1	1	1	1	1	1	1	1
		Bus	number	1	2	3	4	5	9	7	8	6	10	11	12	13	14

Bus Data of IEEE 14-Bus System

Shunt Capacitor Data of IEEE 14-Bus System

Bus Number	Suseptance (p.u.)						
9	0.19 + 0.Your two-digit serial number						

- 1. Use the Power World Simulation Package to simulate the above IEEE 14-bus power system indicating the following:
- > The single line diagram of the system including the circuit breaker at both ends of every line.
- > The voltage (p.u.), generation (MW and MVAR), and load (MW and MVAR) for each bus.
- > The line-flows (MW and MVAR) at both ends of every line.
- ➤ The line-flow pie chart on every line.
- 2. Perform the following tasks:
- Run your own case for a simulation time of 2 hours (7200 seconds) and simulation speedup of 60 seconds.
- ➤ Use the load variation graph to simulate a varying load increase from 100% (using the base case) to 150% during the simulation time (This must be automated increase in the load).
- > Show the animated flows on the single-line diagram.
- > Enforce the line overloads to check the line limits.
- Detect and record any system's abnormality during the simulation time (e.g., bus voltages outside 5% range of the nominal values, overloaded lines, ...etc.).
- 3. Introduce a solution for the problems detected earlier to ensure a normal operation of the system during the simulation time (the two-hours).
- 4. Write a formal typed-report showing the following items:
- > The single-line diagram of the original case.
- > Statement on the problems faced during the simulation time.
- > The single-line diagram of the modified case (showing all modifications made to resolve the problems of the original case).
- Statements on the suggested solutions with clear explanation and justification for each solution.

Submission Format:

Submit a hard-copy as well as a softcopy (on a cd). Label the softcopy with your student ID for all files in the following format:

- ➤ S200xxxxx0-o.pwd for the original file with extension pwd.
- ➤ S200xxxxx0-o.pwp for the original file with extension pwp.
- > S200xxxxx0-m.pwd for the modified file with extension pwd.
- > S200xxxxx0-m.pwp for the modified file with extension pwp.
- > S200xxxxx0.doc for the report file with extension doc.

Control Options:

You may use one of the following control options:

- ✤ Increase the number of circuit of lines (maximum one circuit).
- ✤ Add a new line (maximum two circuits).
- Add a new Generator to one of the existing busses (one generator of 100MW and 40MVAR).
- Add Capacitor banks (maximum at two locations; each with 40MVAR).
- ♦ Use Transformer taps (maximum +/- 25% of the nominal value).

Part II: Short-Circuit Studies

Consider the IEEE 14-bus system given in Part I of this project. Assume that each generator has a subtransient reactance of 15% on the 100MVA base. Conduct short circuit analysis before and after modifying your system for the following:

- Calculate the subtransient fault current seen by each circuit breaker due to a solid three-phase fault occur at all bus locations.
- > Calculate the subtransient fault current seen by each circuit breaker due to a three-phase fault through an impedance of (0.1+0.your two digit serial number) occur at all bus locations.
- > Find out the proper capacity (in MVA) needed of each circuit breaker in these busses.

Due date: December 9th 2013

Good Luck in your project