KING FAHD UNIVERSITY OF PETROLEUM & MINERALS ELECTRICAL ENGINEERING DEPARTMENT EE 306 – Term 171 HW # 5: Synchronous Machines Due Date: UT Classes: December 10, 2017 MW Classes: December 11, 2017

Problem 1

A 9 kVA, 208 V, 1200 rpm, three phase, 60 Hz, Y-connected synchronous generator has a field winding resistance of 4.5 Ω and armature winding impedance of 0.3+j5 Ω per phase. When the generator operates at its full load and 0.8 PF lagging, the field winding current is 5 A. The rotational loss is 500 W. Determine:

- (a) The voltage regulation
- (b) Efficiency
- (c) The torque applied by the prime mover

Problem 2

A three phase, 14 kV, 10 MVA, 60 Hz, two pole, 0.85 PF lagging, star connected, synchronous generator has $X_s=20 \Omega$ per phase and $R_a=2 \Omega$ per phase. The generator is connected to an infinite bus.

- (a) Determine the excitation voltage at the rated condition. Draw the phasor diagram for this condition.
- (b) Determine the torque angle at the rated condition.
- (c) If the field current is kept constant, determine the maximum power the generator can supply. Neglect R_a.
- (d) For the condition in part (c), determine the generator current and the power factor. Draw the phasor diagram for this condition.

Problem 3

A three phase, 120 MVA, 12 kV, 60 Hz, two pole, 0.85 PF lagging, Y-connected steam turbine driven alternator(synchronous generator) has a stator resistance of R_a = 0.018 Ω and a synchronous reactance of X_s = 1.02 Ω . At full load (rated) condition, the efficiency is 92% (the field winding loss is neglected). At this condition, determine

- (a) The synchronous speed
- (b) The power loss in the armature resistance
- (c) The rotational loss
- (d) The torque applied to the shaft by the steam turbine prime mover

Problem 4

A 208-V Y-connected synchronous motor is drawing 40 A at unity power factor from a 208-V power system. The field current flowing under these conditions is 2.7 A. Its synchronous reactance is 0.8Ω . Assume a linear open-circuit characteristic.

(*a*) Find the torque angle δ .

(b) How much field current would be required to make the motor operate at 0.8 PF leading?

(c) What is the new torque angle in part (b)?

Problem 5

A 480-V, 100-kW, 50-Hz, four-pole, Y-connected synchronous motor has a rated power factor of 0.85 leading. At full load, the efficiency is 91%. The armature resistance is 0.08 Ω , and the synchronous reactance is 1.0 Ω . Find the following quantities for this machine when it is operating at full load:

- (a) Output torque
- (b) Input power
- (c) n_m (Mechanical speed of the machine)
- (d) E_A

- (e) $|I_A|$
- (f) P_{conv}
- (g) Rotational loss= $P_{mech} + P_{core} + P_{stray}$