KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

ELECTRICAL ENGINEERING DEPARTMENT

Dr. Ibrahim O. Habiballah EE-463 - 161

Key Solutions

Quiz 3 ser#: I.D.: Name:

Problem #1

The one-line diagram of a simple power system is shown below. All impedances are expressed in per unit on a common MVA base. The generators are operating on no load at their rated voltage with their emfs in phase. A three-phase fault occurs at bus 1. Assume pre-fault bus voltages as $1.0 \, \lfloor 0^{\circ}$ per-unit. In order to limit the faulted current to -j5 pu, the impedance form bus one to the ground must be

$$X''_d = 0.1 \qquad X_L = 0.2 \qquad 2$$

$$X''_d = 0.1 \qquad X''_d = 0.1$$

- a. 0.08 ∠90°
- b. 0.08 ∠-90°
- c. $0.0 \angle 0^{\circ}$ (i.e., solidly grounded)
- d. Cannot be found unless the connection types (wye/delta) are provided for all components.

Problem # 2

A solidly wye-connected generator has its terminal "a" open and the other two terminals are connected to each other with a short circuit to ground. The typical values for the symmetrical components of phase "a" current are $I_{a1}=600 \ \angle \ -90^\circ$ A, $I_{a2}=250 \ \angle \ 90^\circ$ A, and $I_{a0}=350 \ \angle \ 90^\circ$ A. The current that flow in the generator's neutral is.

- a. 904.1 ∠144.5°
- b. 904.1 ∠35. 5°
- **c.** 1050 ∠90°
- d. 0.0 ∠0°