- Q1) Textbook Problem 4.13
- Q2) Textbook Problem 4.14
- Q3) Textbook Problem 4.27

Q4)

A 10-hp 120-V 1000 r/min shunt dc motor has a full-load armature current of 70 A when operating at rated conditions. The armature resistance of the motor is $R_A = 0.12 \Omega$, and the field resistance R_F is 40

 Ω . The adjustable resistance in the field circuit $R_{\rm adj}$ may be varied over the range from 0 to 200 Ω and is currently set to 100 Ω . Armature reaction may be ignored in this machine. The magnetization curve for this motor, taken at a speed of 1000 r/min, is given in tabular form below:

E_A , V	5	78	95	112	118	126	130
I_F , A	0.00	0.80	1.00	1.28	1.44	2.88	4.00

- (a) What is the speed of this motor when it is running at the rated conditions specified above?
- (b) The output power from the motor is 10 hp at rated conditions. What is the output torque of the motor?
- (c) What are the copper losses and rotational losses in the motor at full load (ignore stray losses)?
- (d) What is the efficiency of the motor at full load?
- (e) If the motor is now unloaded with no changes in terminal voltage or $R_{\rm adj}$, what is the no-load speed of the motor?
- (f) Suppose that the motor is running at the no-load conditions described in part (e). What would happen to the motor if its field circuit were to open? Ignoring armature reaction, what would the final steady-state speed of the motor be under those conditions?
- (g) What range of no-load speeds is possible in this motor, given the range of field resistance adjustments available with $R_{\rm adj}$?

The magnetization curve for a separately excited dc generator is shown in the figure below. The generator is rated at 6 kW, 120 V, 50 A, and 1800 r/min and is shown in Figure P8-8. Its field circuit is rated at 5A. The following data are known about the machine:

$$R_{\scriptscriptstyle A} = 0.18\,\Omega$$
 $V_{\scriptscriptstyle F} = 120~{
m V}$ $R_{\rm adj} = 0~{
m to}~40~\Omega$ $R_{\scriptscriptstyle F} = 20~\Omega$ $N_{\scriptscriptstyle F} = 1000~{
m turns}~{
m per}~{
m pole}$

Answer the following questions about this generator, assuming no armature reaction.

- (a) If this generator is operating at no load, what is the range of voltage adjustments that can be achieved by changing $R_{\rm adj}$?
- (b) If the field rheostat is allowed to vary from 0 to 30 Ω and the generator's speed is allowed to vary from 1500 to 2000 r/min, what are the maximum and minimum no-load voltages in the generator?

FIGURE P8-8

Q6)

Assuming that the generator in Problem (Q5) has an armature reaction at full load equivalent to 400 A-turns of magnetomotive force, what will the terminal voltage of the generator be when I_F = 5 A, n_m = 1700 r/min, and I_A = 50 A?