KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS

Department of Electrical Engineering EE-306 Electromechanical Devices

Course syllabus 132

Instructor	Section	E-mail
Dr. Chokri Belhaj Ahmed	01 & 03	bachokri@kfupm.edu.sa
Dr. Ibrahim Habiballah	02 & 04	ibrahimh@kfupm.edu.sa

Office Hours: MW 09:50-10:50 am & 12:30-1:00pm

Textbook:

Electrical Machinery Fundamentals

By: Stephen J. Chapman, 2012, 5th edition.

1) Three-Phase Circuits (Appendix A): (4 lectures)

- A.1 Generation of Three-Phase Systems
- A.2 Voltages and Currents in a Three-Phase Circuit
- A.3 Power Relationships in Three-Phase Circuits
- A.4 Analysis of Balanced Three-Phase Systems
- A.5 One-Line Diagrams
- A.6 Using the Power Triangle

2) Chapter1: Introduction to Magnetic Principle (Magnetic Circuits): (4 lectures)

- 1.1 Electrical Machines, Transformers, and Daily Life
- 1.4 The Magnetic Field
- 1.5 Faraday's Law Induced Voltage from a Time-Changing Magnetic Field

3) **Chapter2: Single Phase Transformer**: (5 lectures)

- 2.1 Why Transformers Are Important to Modern Life
- 2.2 Types and Construction of Transformers
- 2.3 The Ideal Transformer
- 2.4 Theory of Operation of Real Single-Phase Transformers
- 2.5 The Equivalent Circuit of a Transformer
- 2.7 Transformer Voltage Regulation and Efficiency

4) Chapter 7 & 8: DC Machines: (6 lectures)

- 7.5 The Internal Generated Voltage and Induced Torque Equations of Real DC Machines
- 7.6 The Construction of DC Machines
- 7.7 Power Flow and Losses in DC Machines
- 8.1 Introduction to DC Motors
- 8.2 The Equivalent Circuit of a DC Motor (Generator)
- 8.3 The Magnetization Curve of a DC Machine (Generator)
- 8.4 Separately Excited and Shunt DC Motors (Generator)
- 8.5 The Permanent-Magnet DC Motor
- 8.6 The Series DC Motor (Generator)
- 8.7 The Compounded DC Motor (Generator)

5) Chapter 4 & 5 Synchronous Machines: (6 lectures)

- 4.1 Synchronous Generator Construction
- 4.2 The Speed of Rotation of a Synchronous Generator
- 4.3 The Internal Generated Voltage of a Synchronous Generator
- 4.4 The Equivalent Circuit of a Synchronous Generator
- 4.5 The Phasor Diagram of a Synchronous Generator
- 4.6 Power and Torque in Synchronous Generators
- 4.7 Measuring Synchronous Generator Model Parameters.
- 5.1 Basic Principles of Motor Operation
- 5.2 Steady-State Synchronous Motor Operation

6) **Chapter 6: Three-Phase Induction Motors**: (5 lectures)

- 6.1 Induction Motor Construction
- 6.2 Basic Induction Motor Concepts
- 6.3 The Equivalent Circuit of an Induction Motor
- 6.4 Power and Torque in Induction Motors
- 6.5 Induction Motor Torque-Speed Characteristics

Major Exam Schedule

EXAM	DATE	TIME	LOCATION
MAJOR I	Thursday Feb. 27 th , 2014	6:00-7:30 PM	TBA
MAJOR II	Sunday Apr. 13 th , 2013	6:00-7:30 PM	TBA
FINAL	Tuesday May 20 th , 2014	7:00-9:30 PM	TBA

Grading Distribution

Component	Percentage
Quizzes, Attendance and homework	15%
Two Major Exams	15%+15%
Lab	20%
Design Project	5%
Final Exam	30%

Week	Experiment Title	
1	No Labs	
2	Expt.1: Introduction to Cassy Lab	
3	Expt.2: Three Phase Circuits	
4	Expt.3: Magnetic Circuits	
5	Problem session # 1 in the lab (No experiment)- Major Exam I	
6	No Labs	
7	Expt.4: Equivalent Circuit of a Transformer	
8	Expt.5: Regulation and Efficiency of a Single Phase Transformer	
9	No Labs	
10	Problem session # 2 in the lab (No experiment)	
11	Expt.6: Load Characteristics of Shunt and Compound DC Generators -Major Exam II	
12	Expt.7: Torque Speed Characteristics of DC Shunt and Compound Motors	
13	Expt.8: Determination of Parameters of Synchronous Generators	
14	Expt.9: Torque Speed Characteristics of a Three Phase Induction Motors	
15	Lab final	

Note: Each must conduct the lab experiment before submitting the related report.

EE 306 LAB Grading Policy for 20%		
Lab report	9	
Lab performance	3	
Preparatory Quiz	2	
Lab final (Questions(2)+Connection(4))	6	
Total	20	

Homework list

HW#	Assignment	Due
1	Appendix: A-2, A-3, A-6	First class of Week # 3
2	Chapter 1: 5, 6, 7, 12	First class of Week # 5
3	Chapter 2: 1 (a , c , d , e), 2 , 4 , 6 , 7	First class of Week # 8
4	Chapter 7: 3, 4	First class of Week # 10
5	Chapter 8: 2,3,13(a,b),16(a,b,c),17(a,b,c),22(a,b)	First class of Week # 12
6	Chapter 4: 2(g not included), 4, 6	First class of Week # 13
7	Chapter 5: 1,3, 7, 10	First class of Week # 14
8	Chapter 6: 1, 3, 5, 8, 10, 12, 15	Second class of Week # 15

Course Objectives

After successfully completing the course, the students will be able to

- understand basic concepts of electrical machines
- will learn how to start and operate an electrical machine;
- learn the details of construction of different types of electrical machines;
- learn how to analyze the performance and design the components

Course Outcomes

- 1. An ability to apply knowledge of mathematics, science, and engineering to the analysis of electrical machineries.
- 2. Design and conduct experiments, as well as to analyze and interpret data
- 3. An ability to identify, to formulate, and solve engineering problems in the area of electromechanical energy conversion devices.
- 4. Acquire knowledge of contemporary issues
- 5. Use the techniques, skills, and modem engineering tools necessary for engineering practice.