KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

ELECTRICAL ENGINEERING DEPARTMENT

Dr. Ibrahim O. Habiballah

EE-360

Key Solutions

Quize # 6	Serial #	Name:	I.D.#

Circle the correct answer.

1) In the phasor diagram of a Pi-nominal transmission line shown below, number "1" must be (.....), number "2" must be (.....), number "3" must be (.....), and number "4" must be (.....).

- $a) \quad R*I_R\;; \qquad \quad j\;X_L\;(I_R+I_{CR})\;; \qquad \quad I_{CR}\;; \qquad \quad I_{CS}\;.$
- b) R*I; $j X_L*I$; I_{CR} ; I_{CS} .
- c) $0.5*R*I_R$; $j 0.5*X_L (I_R + I_{CR})$; I_{CR} ; I_{CS} .
- d) $0.5*R*I_R$; $j 0.5*X_L*I_R$; I_C ; I_S .

(5 Marks)

- 2) A 60 Hz, 200 km, 3-phase, transmission line has a series impedance (0.08 + j 0.48) Ohm/km and a shunt admittance (j 3.33×10^{-6}) S/km. The "B" constant of the line using the pi-nominal model is
- a. $0.968 \angle 0.315^{\circ}$
- **b. 97.32** ∠80.54°
- c. $6.553 \times 10^{-4} \angle 90.155^{\circ}$
- d. $6.66 \times 10^{-4} \angle 90^{\circ}$

(5 Marks)