KING FAHD UNIVERSITY OF PETROLEUM & MINERALS ELECTRICAL ENGINEERING DEPARTMENT

Dr. Ibrahim O. Habiballah EE-463

Key Solution

Quiz # 1 Serial #

Name:

I.D.#

Draw an impedance diagram for the electric power system shown in Figure 26 showing all impedances in per unit on a 100-MVA base. Choose 20 kV as the voltage base for generator. The three-phase power and line-line ratings are given below.

The base voltage V_{BG1} on the LV side of T_1 is 20 kV. Hence the base on its HV side is

$$V_{B1} = 20 \left(\frac{200}{20} \right) = 200 \text{ kV}$$

This fixes the base on the HV side of T_2 at $V_{B2} = 200$ kV, and on its LV side at

$$V_{BG2} = 200 \left(\frac{20}{200}\right) = 20 \text{ kV}$$

The generator and transformer reactances in per unit on a 100 MVA base, from (3.69) and (3.70) are

G:
$$X = 0.09 \left(\frac{100}{90}\right) = 0.10 \text{ pu}$$

 T_1 : $X = 0.16 \left(\frac{100}{80}\right) = 0.20 \text{ pu}$
 T_2 : $X = 0.20 \left(\frac{100}{80}\right) = 0.25 \text{ pu}$
 G_2 : $X = 0.09 \left(\frac{100}{90}\right) \left(\frac{18}{20}\right)^2 = 0.081 \text{ pu}$

The base impedance for the transmission line is

$$Z_{BL} = \frac{(200)^2}{100} = 400 \ \Omega$$

The per unit line reactance is

Line:
$$X = \left(\frac{120}{400}\right) = 0.30 \text{ pu}$$

The load impedance in ohms is

$$Z_L = \frac{(V_{L-L})^2}{S_{L(3\phi)}^*} = \frac{(200)^2}{48 - j64} = 300 + j400 \ \Omega$$

The load impedance in per unit is

$$Z_{L(pu)} = \frac{300 + j400}{400} = 0.75 + j1.0$$
 pu

The per unit equivalent circuit is shown in Figure 27.

