AP 5.2 From Assessment Problem 5.1

$$v_o = (-R_f/R_i)v_s = (-R_x/16,000)v_s$$

= (-R_x/16,000)(-0.640) = 0.64R_x/16,000 = 4×10⁻⁵R_x

Use the negative power supply value to determine one limit on the value of R_x :

$$4 \times 10^{-5} R_x = -15$$
 so $R_x = -15/4 \times 10^{-5} = -375 \,\mathrm{k\Omega}$

Since we cannot have negative resistor values, the lower limit for R_x is 0. Now use the positive power supply value to determine the upper limit on the value of R_x :

 $4 \times 10^{-5} R_x = 10$ so $R_x = 10/4 \times 10^{-5} = 250 \,\mathrm{k\Omega}$

Therefore,

 $0 \leq R_x \leq 250 \,\mathrm{k}\Omega$

AP 5.4 [a] Write a node voltage equation at v_n ; remember that for an ideal op amp, the current into the op amp at the inputs is zero:

$$\frac{v_n}{4500} + \frac{v_n - v_o}{63,000} = 0$$

Solve for v_o in terms of v_n by multiplying both sides by 63,000 and collecting terms:

$$14v_n + v_n - v_o = 0$$
 so $v_o = 15v_n$

Now use voltage division to calculate v_p . We can use voltage division because the op amp is ideal, so no current flows into the non-inverting input terminal and the 400 mV divides between the 15 k Ω resistor and the R_x resistor:

$$v_p = \frac{R_x}{15,000 + R_x} (0.400)$$

Now substitute the value $R_x = 60 \text{ k}\Omega$:

$$v_p = \frac{60,000}{15,000 + 60,000} (0.400) = 0.32 \text{ V}$$

Finally, remember that for an ideal op amp, $v_n = v_p$, so substitute the value of v_p into the equation for v_0

$$v_o = 15v_n = 15v_p = 15(0.32) = 4.8$$
 V

[b] Substitute the expression for v_p into the equation for v_o and set the resulting equation equal to the positive power supply value:

$$v_o = 15 \left(\frac{0.4R_x}{15,000 + R_x} \right) = 5$$

 $15(0.4R_x) = 5(15,000 + R_x)$ so $R_x = 75 \,\mathrm{k}\Omega$

AP 5.5 [a] Since this is a difference amplifier, we can use the expression for the output voltage in terms of the input voltages and the resistor values given in Eq. 5.22:

$$v_o = \frac{20(60)}{10(24)} v_{\rm b} - \frac{50}{10} v_{\rm a}$$

Simplify this expression and substitute in the value for $v_{\rm b}$:

$$v_o = 5(v_b - v_a) = 20 - 5v_a$$

Set this expression for v_o to the positive power supply value:

 $20 - 5v_{\rm a} = 10$ V so $v_{\rm a} = 2$ V

Now set the expression for v_o to the negative power supply value:

$$20 - 5v_{\rm a} = -10$$
 V so $v_{\rm a} = 6$ V

Therefore $2 \le v_a \le 6 V$

[b] Begin as before by substituting the appropriate values into Eq. 5.22:

$$v_o = \frac{8(60)}{10(12)}v_{\rm b} - 5v_{\rm a} = 4v_{\rm b} - 5v_{\rm a}$$

Now substitute the value for $v_{\rm b}$:

$$v_o = 4(4) - 5v_a = 16 - 5v_a$$

Set this expression for v_o to the positive power supply value:

 $16-5v_{\mathrm{a}}=10~\mathrm{V}$ so $v_{\mathrm{a}}=1.2~\mathrm{V}$

Now set the expression for v_o to the negative power supply value:

 $16 - 5v_{\rm a} = -10$ V so $v_{\rm a} = 5.2$ V

Therefore $1.2 \le v_a \le 5.2 \text{ V}$

- P 5.7 [a] The circuit shown is a non-inverting amplifier.
 - [b] We assume the op amp to be ideal, so $v_n = v_p = 3$ V. Write a KCL equation at v_n :

$$\frac{3}{40,000} + \frac{3 - v_o}{80,000} = 0$$

Solving,
 $v_o = 9$ V.

P 5.16 [a] This circuit is an example of an inverting summing amplifier.

[b]
$$v_o = -\frac{220}{33}v_a - \frac{220}{22}v_b - \frac{220}{80}v_c = -8 + 15 - 11 = -4$$
 V
[c] $v_o = -19 - 10v_b = \pm 6$
∴ $v_b = -1.3$ V when $v_o = -6$ V;

$$v_{\rm b} = -2.5$$
 V when $v_o = 6$ V

$$\therefore$$
 -2.5 V $\leq v_{\rm b} \leq -1.3$ V

P 5.20 [a]
$$v_p = v_s$$
, $v_n = \frac{R_1 v_o}{R_1 + R_2}$, $v_n = v_p$
Therefore $v_o = \left(\frac{R_1 + R_2}{R_1}\right)v_s = \left(1 + \frac{R_2}{R_1}\right)v_s$

[b] $v_o = v_s$

[c] Because $v_o = v_s$, thus the output voltage follows the signal voltage.