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Abstract—In this paper, we present an algorithm that solves a time-domain nonlinear coupled
system arising in nonlinear optics. The algorithm is an explicit nonlinear finite-difference method
(NFDM) based on the exact solution of the nonlinear discrete equations. It enables simulations that
preserve the characteristics of nonlinearity as well as coupling, and can be extended to arbitrary input
waveform conditions. c© 2001 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

Time-domain analysis of nonlinear effects in modern optical devices provides an invaluable insight
into the understanding of device behavior and wave-device interactions. With such type of
analysis, several important phenomena can be investigated and studied. It also enables the
construction of accurate models incorporating material characteristics as well as wave propagation
effects. The material relaxation effects and time-domain transients can, thus, be included.

All previously reported models for the second-harmonic generation (SHG) in second-order non-
linear optical devices have implicitly assumed continuous-wave (CW) operations and have relied
on frequency-domain representations of the propagating fields. See, for example, [1]. Recently,
Alsunaidi et al. have proposed a time-domain model that is capable, in principle, of characteriz-
ing second-order nonlinearities for all input signal conditions [2]. However, they have restricted
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the solution of their model to CW operations and validated the results against well-documented
literature.

The model proposed in [2] is given by

c24f = n2
fftt + 2χ(2)(fs)tt,

c24s = n2
sstt + χ(2)(f2)tt.

(1)

The unknowns f = f(x, y, z, t) and s = s(x, y, z, t) are the fundamental and second-harmonic
field strength, respectively. The parameter c is the speed of light, and χ(2) is the second-order
nonlinear optical susceptibility. The coefficients nf and ns are the material refractive indices with
respect to the fundamental and second-harmonic fields. The operator 4 is the spatial Laplacian.

This model describes the generation of a second-harmonic field in response to an applied
fundamental field that propagates along the optical device. It also describes the nonlinear energy
coupling and energy exchange between the fundamental and second-harmonic fields.

In this paper, we present an algorithm that avoids the simplifying assumptions on the time
derivatives imposed in [2]. Doing so, the time-domain numerical solution preserves the charac-
teristics of nonlinearity, as well as coupling, and can be extended to arbitrary input waveform
conditions such as pulsed optical beams.

The algorithm is an explicit nonlinear finite-difference method (NFDM) based on the exact
solution of the nonlinear discrete equation for the fundamental field strength f . It preserves the
second-order accuracy and does not increase the computation intensity.

In the following, we describe the algorithm and apply it to an optical waveguide problem.
Then, we analyze and compare some numerical simulations.

2. NUMERICAL ALGORITHM

To discretize (1), we expand the time derivatives and approximate them by finite central
differences at a time level n. The discrete equations can be decoupled by substituting for sn+1

from the second equation into the first one. The resulting equation is a cubic polynomial for
fn+1, (

fn+1
)3

+ an
(
fn+1

)2
+ bnf

n+1 + cn = 0. (2)

The coefficients are given by

an = 3φn, (3)

bn = fn−1 (3fn−1 − 4fn)−
2n2

fn
2
s(

χ(2)
)2 +

2
(
2c2n2

s (sn−1 − 2sn)− c4 dt2∆sn
)

c2χ(2)
, (4)

cn = φn
(
f2
n−1 − 4φnfn

)
+

2n2
s

(
φnn

2
f + c2 dt2∆fn

)
(
χ(2)

)2
+

4n2
s (φnsn + fn−1 (sn − sn−1))− 2c2 dt2φn∆sn

χ(2)
,

(5)

where φn = 2fn − fn−1.
For the range of values used in optical waveguides, the polynomial (2) has three real solutions

(cf. [3, pp. 178–180]). Out of the three solutions, only one solution is found to be physical and
given by

fn+1 = −2
√
Qn cos

(
θn − 2π

3

)
− an

3
,

where

Qn =
a2
n − 3bn

9
, Rn =

2a3
n − 9anbn + 27cn

54
, and θn = cos−1

(
Rn√
Q3
n

)
.

Once fn+1 is calculated, sn+1 is calculated explicitly from the second equation.
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The time step can be chosen based on the CFL condition. For example, one can use a uniform
time step corresponding to the maximum propagation speed

c√
n2
m − 2χ(2)A

,

where nm = min{nf , ns} and A is the max amplitude of the fields strength.
Note that bn and cn in (4) and (5) are singular for χ(2) = 0. In this case, however, the wave

equation (1) is linear, decoupled, and can be solved directly [4].

3. NUMERICAL SIMULATION OF SHG IN WAVEGUIDES

We use the scheme presented in Section 2 to simulate SHG in the two-dimensional symmetric
dielectric slab waveguide shown in Figure 1. For the wavelengths λf = 1.0µm and λs = 0.5µm,
the parameters of the waveguide shown in Figure 1 are set such that only the first guided modes
for both the fundamental and second-harmonic fields are allowed to propagate with effective
refractive index of neff = 1.15295 (phase-matched condition [5]). For the theory of dielectric
waveguides and modes of propagation, see, for example [4,6].
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Figure 1. Dielectric slab waveguide.

As an excitation (input) field, we apply a CW beam with amplitude of 1.0x107 V/m. The
transverse profile of the excitation corresponds to the first guided mode at the fundamental
operating frequency.

We use the spatial resolution dz = λf/100 = .01µm and dx = 0.1µm. This resolution is fine
enough to resolve the rapid signal variations.

4. NUMERICAL RESULTS

In the absence of analytical solutions, we validate our method by performing two types of
comparisons on the calculated fields strength and intensity. It is to be mentioned that the
intensity is proportional to the sum of the squares of the field strength over x.

First, we compare the NFDM simulation results of the intensity exchange between the funda-
mental and second-harmonic fields along the device with those generated by the beam propagation
method (BPM) [7]. This comparison is shown in Figure 2 for χ(2) = 3 × 10−10 m/V. The two
results coincide [1]. Also shown in the figure is an extended view of the intensity curves around
the 50% coupling between the fundamental and second-harmonic fields for detailed comparison.

Second, the convergence of the NFDM solution to the linear solution as χ(2) vanishes is exam-
ined. Figure 3 shows that as χ(2) decreases the depletion of the fundamental beam decreases and
approaches the no-coupling case (linear solution).
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Figure 2. Normalized intensity using BPM and NFDM for χ(2) = 3 × 10−10 m/V.
Solid oscillations: fundamental; dotted oscillations: second-harmonic.

5. CONCLUSION

We presented and validated a nonlinear explicit finite difference algorithm that solves a time-
domain nonlinear coupled system. The results obtained match with the BPM and the linear
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Figure 3. Comparison with the linear response as χ(2) vanishes.

response. Maintaining all the terms, the scheme reflects more accurately the nonlinearity effects
and can simulate a broader class of problems. Such issues are under investigation.
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