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A Stable Time-Domain Beam Propagation Method
for Modeling Ultrashort Optical Pulses

Husain M. Masoudi

Abstract—A new technique to model ultrashort optical pulses is
proposed and verified. The technique uses Pade approximant to
account for the fast pulse propagational variations. Numerical pa-
rameters of the technique have been tested and it was shown that
the method is simple, very stable, and accurate in modeling ultra-
short optical pulses in long propagation interaction.

Index Terms—Finite-difference analysis, modeling, numerical
analysis, optical waveguide theory, Pade approximant, partial
differential equation, ultrashort pulse propagation beam propa-
gation method (BPM).

I. INTRODUCTION

MODERN optical communication circuits require efficient
and accurate modeling techniques in order to better un-

derstand, design, and fabricate innovative devices. It is to be said
that modeling optical circuits can be very challenging due to
the complicated nature of such devices and the length of inter-
action involved. In most cases, the operation of these devices
requires the propagation of optical beams for several thousands
of wavelengths long and also demands time-domain (TD) anal-
ysis rather than continuous-wave (CW) operations. In principle,
the well-known finite-difference TD (FDTD) technique is well
suited for such problems [1]. However, the FDTD is a very com-
puter-intensive technique and not suited for long longitudinal
interaction. In the literature, there are a number of new tech-
niques under the name of TD and they are very similar in their
approach to the classical FDTD [2]. Some of these methods use
slowly varying time stepping approximation (first-order time
derivative) and some use additional techniques (i.e., Pade re-
lations) to account for the neglected second derivative of time
as an improvement process. Unfortunately, most of these tech-
niques proved to be inferior to FDTD in terms of computer re-
sources consumption [2]. The beam propagation method (BPM)
was established over the years as a prime technique for long
device interaction, but most of the efforts were developed for
CW operation. Recently, we proposed very efficient TD-BPM
techniques for modeling optical pulse propagation in long de-
vice interaction [3]. They involve writing the TD wave equation
as a one-way paraxial equation for the propagation along the
axial direction while retaining the time variation as another
element along with other spatial variables. This arrangement
has the advantage of allowing the numerical time window to
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follow the evolution of the pulse and hence minimize computer
resources. However, due to the paraxial approximation imposed,
these techniques showed limitation in modeling ultrashort pulse
propagation. In the literature, there are a few reported techniques
proposed for TD solution of higher order parabolic equations in
nonoptical fields, i.e., underwater acoustics and seismology [4].
Recently, a new wide-angle TD-BPM technique based on finite
element has been reported for modeling short pulse propagation
[5]. The method was applied under certain approximation by ne-
glecting first-order derivatives of time and longitudinal terms. In
this work, we continue the previous effort of using the one-way
propagational wave equation approach for the purpose of mod-
eling ultrashort pulses. The rational complex coefficient approx-
imation based on the well-known Pade approximant has been
used as an operator to march the pulse packet along the direc-
tion of propagation [6], [7].

II. NUMERICAL METHOD

Let us assume a two-dimensional optical structure ( and )
with the TD wave equation described as

(1)

where for TE fields , , and representing
the electric field, for TM fields , , and
representing the magnetic field, is the wave velocity in free
space, and is the position-dependent refractive index
variation. A carrier frequency and a propagation coefficient

in the direction of propagation are extracted from ,
as , where , is a
reference refractive index, and means the complex conjugate.
Then (1) can be written in terms of as

(2)

The propagation of a compact pulse inside a limited time
window will produce a condition that the pulse ultimately
disappears after a certain number of propagation steps where
it requires the computational window to be adjusted in time at
each propagation step. The adjustment effectively moves at the
group velocity of the pulse envelope. Hence, the substitution
of a moving time coordinate with arbitrary
changes (2) to [3]

(3)
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Equation (3) can be written in a product form as [6]

(4)

where the pseudodifferential operator is defined as shown
in (5), at the bottom of the page. In this work, we
concentrate on the forward propagation of and write
the solution as

, where is the initial
field. One of the most robust and well tested square root oper-
ator is the rational complex coefficient approximation based on
the well-known Pade approximant given as [6], [7]

(6)

where and are called Pade coefficients with being the Pade
order. In problems involving scattering, it has been established
that evanescent modes are not properly eliminated if real Pade
coefficients are used where the associated error can be largely
reduced by rotating the original real axis branch cut through an
angle [7]. In this work, the finite-difference approach is used as
a descritization scheme for both and derivatives.

III. RESULTS AND DISCUSSION

The propagation of a pulsed optical beam with a tem-
poral Gaussian pulse of the form

is assumed as initial condition at
in all simulations, where scales the duration of the initial
pulse. In the numerical simulation, boundary conditions for the
field are necessary in the transverse spatial variables and in the
TD. At this stage, we have chosen simple zero spatial boundary
conditions on the boundaries surrounding the structure. On the
other hand, two simple methods of applying temporal boundary
conditions can be used. The first method involves applying what
is called the moving time window. The boundary conditions

at are applied in the relative time window
while moving in the absolute time frame with the velocity of
the pulse, so that the relative motion of the pulse in the time
window is cancelled. However, in some cases, the required
group velocity is not known prior to the simulation, and
has to be generated dynamically from the propagation process.
One can apply periodic boundary conditions at the ends of
the relative time window, where a pulse leaves the window at
one side and basically re-enters at the other side of the time
window. Both of these techniques were tested numerically and
proved to be very practical. In order to characterize the new
technique, we apply it to model the behavior of known pulse
propagation that has an approximate analytical formulation
[8]. In the following simulation, a pulsed Gaussian beam is
propagated in two dimensions ( and ) in a homogenous

Fig. 1. Convergence of the technique with the longitudinal step size �z.
(a) The percentage maximum field error. (b) The percentage relative spatial
waist error. (c) The power ratio of the pulsed beam.

nondispersive medium, and the numerical results are compared
with analytical results. With an initial spatial Gaussian waist

at , the evolution of each frequency component of the
spectrum of the wavefunction in homogenous space is given in
the frequency-domain as [3], [5], [8]

(7)

where the definition of the parameters in (7) are given in [8,
eqs. (3)–(6)]. The evolution of a pulsed Gaussian beam in ho-
mogenous space can be found from (7) by taking the inverse
Fourier transform of the product of and the Fourier trans-
form of the initial pulse. Please see [8, eq. (9)] for more detail.
The following results are for an initial spatial Gaussian waist

m, an initial pulsewidth of fs, the medium
is assumed to be free space and m. The reference
refractive index was chosen to be . The pulse is propa-
gated to a distance of m. Fig. 1 shows the convergence
of the technique with when m, fs,
and . The figure shows clearly that the method converges
with a large longitudinal step size around m. Also to
be noticed from the same figure, the power part, that the oper-
ator is strongly unitary for the variation of .

Fig. 2 shows the convergence of the technique with the spatial
step size when fs, and m and for two
Pade order values of and . Again the unitary of
the operator is very clear in the figure with the change of .

(5)
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Fig. 2. Convergence of the technique with the spatial step size �x. (a) The
percentage maximum field error. (b) The percentage relative time waist error.
(c) The power ratio of the pulsed beams.

Fig. 3. Comparison between the new technique and the parabolic TD , [3] for
different initial ultrashort pulse propagation. Left side figures [(a), (b), and (c)]
for the parabolic method and right side figures [(d), (e), and (f)] are for the
present technique. (a) and (d) The percentage maximum field error. (b) and
(e) The percentage relative time waist error. (c) and (f) The power ratio of the
pulsed beams.

Fig. 2 also shows that the difference between the two Pade order
results is small.

Fig. 3 shows a comparison between the parabolic TD method
[3] and the present technique for ultrashort initial pulsewidths.
The results are for m and m, where

for the parabolic method is always adjusted between 0.1
and 0.01 m to satisfy the stability condition. A comparison
between the left-side figures that belong to the parabolic and
the right-side figures that belong to the present technique shows

the merit of using the present technique for modeling ultrashort
optical pulses. The figure shows the convergence of the present
technique with the decrease of . Conversely, the error of the
parabolic technique is not affected by the reduction of be-
cause the error here is mainly associated to the paraxial approx-
imation; therefore, it is limited from modeling ultrashort pulses.
It should be noted that in modeling ultrashort optical pulses,
small time step sizes are needed to represent the rapid varia-
tion of the pulse envelope as seen by the results of the present
technique.

Finally, the new TD-BPM technique showed that it has robust
stability for the variation of numerical parameters with conver-
gence values around a hundred times the values of the explicit
FD. The present technique takes around 0.6 s/step when
and 60 150 mesh points of spatial and time discretizations
respectively, when running on an ordinary laptop computer of
2.1-GHz-speed processor.

IV. CONCLUSION

A new stable technique to model ultrashort optical pulses has
been proposed and tested. The technique is an extension to the
TD-BPM, which solves the TD wave equation by marching the
field along one direction. The technique uses the Pade approxi-
mant to account for fast envelope pulse propagational variations.
The numerical parameters of the technique have been examined
and it was shown that the method is efficient, very stable, and
accurate in modeling ultrashort optical pulses.
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