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Efficient Time-Domain Beam-Propagation Method
for Modeling Integrated Optical Devices

Husain M. Masoudi, Muhammad A. Al-Sunaidi, and John M. Arnold

Abstract—A new efficient technique that models the behavior
of pulsed optical beams in homogenous medium, metallic and
dielectric waveguides, is introduced and verified using both linear
nondispersive and dispersive examples that have analytical predic-
tions. Excellent accuracy results have been observed. The method
is called time-domain beam-propagation method (TD-BPM)
because it is similar to the classical continuous-wave BPM with
additional time dependence. The explicit finite difference and
the Du Fort–Frankel approaches were used to discretize the
TD-BPM equation. Comparisons between these techniques are
also given with the application of the perfectly matched layers as
spatial boundary conditions to the Du Fort–Frankel. Then the
TD-BPM was successfully applied to model a two-dimensional
dielectric -junction. It is concluded that the new technique is
more efficient than the traditional finite-difference TD method,
especially in modeling large optical devices.

Index Terms—Beam-propagation method (BPM), finite-differ-
ence analysis, modeling, numerical analysis, optical waveguide
theory, partial differential equation, pulse propagation, time
domain (TD).

I. INTRODUCTION

T HE INTEGRATION of a large number of optical devices,
for processing optical communication signals, makes the

ability to analyze, understand, and predict the behavior of such
circuits a difficult task that needs to be resolved. There are a
number of reasons for this difficulty. First, many of the optical
devices are designed on the basis of nonlinear optical interaction
of or responses of the material, which require careful
understanding due to the complexity of these phenomena. The
second reason is that most of the applications require pulsed op-
tical beams rather than continuous-wave (CW) operation, where
less progress is made to analyze time-domain (TD) problems. It
is worth mention that in most cases, analyzing TD interactions
is more difficult than CW problems because of the large spec-
trum of frequencies involved in the TD. The third, and prob-
ably the most important, reason is that most of these devices
are of a three-dimensional (3-D) nature with length of inter-
action taking place over 10optical wavelength or longer. For
these reasons, efficient algorithms are required to analyze such
devices accurately. Pulse propagation in optical structures can
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be analyzed, in principle, using the finite-difference time-do-
main (FDTD) method [1]–[5]. The technique was used to model
two-dimensional optical waveguides and showed to be suitable
to some electromagnetic problems in particular microwave and
optical devices [1]–[8]. While this method combines features of
scattering problems, it requires enormous computer resources
(execution time and memory) even for simple two-dimensional
structures [5]–[8]. For a typical 3-D optical waveguide of spa-
tial sizes around 10m by 10 m and 3 mm interaction length,
the FDTD requires 30 spatial step size that keeps numerical
dispersion at its minimum, where is the guide wavelength
[34]. This results in nu-
merical cells for an optical wavelength of m. The
FDTD consumes 24 memory words per cell, which makes the
total memory 1.944 10 words. It is to be noted that these
figures increase with the decrease of. In addition, the total
efficiency is dependant on the time iterations. It is known that
the Courant-Friedrichs and Lewy (CFL) stability requirements
[1]–[5], [34] restrict the time step size to

which is equal to 0.06 fs for the parameters given above.
Considering a Gaussian time pulse of 100-fs half-pulse width
and a time window of 600 fs for only the total pulse to be fully
excited inside the problem space, which gives 10 000 time steps.
Obviously, this would overwhelm existing high-performance
computer machines (supercomputers) [20]–[24]. To overcome
these difficulties, considerable work has been done to model
devices using only one unknown field (based on the wave
equation) rather than six unknown fields (based on Maxwell’s
equations) as in the FDTD [9]–[14]. This will result in a large
saving in terms of computer execution time and storage space,
especially for three-dimensional analysis. Recently, slow
wave simulators have been proposed that depend on slowly
time-varying envelope variation [9]–[13]. These techniques are
not suitable for modeling pulse propagation, which requires
the fast variation of the pulse envelope to be accounted for.
A more interesting approach [14] uses Fourier analysis to
advance the pulse using the beam-propagation method (BPM)
style [15]–[17]. The technique writes the wave equation in the
spectral domain, wherein each frequency of the pulsed beam is
propagated to the desired distance and the new pulse shape is
reconstructed using the inverse fast Fourier transform (FFT).
However, this approach is restricted to linear optical interaction
problems. In this paper, we show that using the classical
explicit finite-difference (EFD) BPM approach [18], [19] to
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solve the time-domain wave equation will lead to a simple and
efficient technique to accurately analyze pulse propagation
in optical waveguides. The CW EFD-BPM is known for its
simplicity, high efficiency, accuracy, and suitability for parallel
implementations especially for modeling three-dimensional
optical devices [18]–[21]. In addition, the technique proved
to be very reliable in modeling three-dimensional devices
containing second-order nonlinear optical interaction of
[22]–[24].

The proposed time-domain BPM (TD-BPM) involves writing
the time-domain wave equation as a one-way paraxial equation
for the propagation along the axial direction. This arrange-
ment has the advantage of allowing the numerical time window
to follow the evolution of the pulse and hence minimizes the
computer storage of the problem as well as the execution time.
The real-valued scalar wavefunctionis factored into a product
of the carrier frequency oscillation and a complex modulating
envelope in the form

and getting the wave equation for the complex envelope.
Applying paraxial approximation to the wave equation, by ne-
glecting derivatives with respect to the axial dimensionhigher
than the first derivatives while keeping all time variation intact,
leads to a one-way propagation of a BPM style equation. This
makes the time dependence of the complex envelope, as it is
another transverse variable in addition to the two spatial dimen-
sions. It is to be noticed that the propagation is essentially in one
direction, , but the complex envelope is not necessarily
assumed to be slowly varying in time. We have used the EFD to
discretize the time-domain BPM equation (an early result of this
technique [EFD-TD] was reported in a communication letter
[25]). On the other hand, we have also found that modifying the
EFD-TD equation, using the Du Fort–Frankel approach [26],
improves the efficiency of the technique while retaining the
same accuracy and features [24], [27], [28]. Throughout the fol-
lowing, for simplicity we will refer to the Du Fort–Frankel tech-
nique as modified EFD-TD (or MEFD-TD). The advantages of
the MEFD-TD over the EFD-TD are:

1) the longitudinal step can be relaxed more;
2) the total mesh points can be divided into two equal sets,

where only one set can be used for computation (50%
saving) and the same accuracy is retained;

3) perfectly matched layers (PMLs) can be used as an ab-
sorbing spatial boundary condition.

Some of these advantages have been observed with the CW
MEFD [24], [27], [28]. The purpose of this paper is to char-
acterize the TD-BPM as a new technique for modeling pulsed
optical beams using both the EFD-TD and the MEFD-TD and
to look at the prospect of analyzing long 3-D optical devices.

In the next section, the time-domain method (TD-BPM)
equations will be derived from the wave equation. Section III
shows the details of discretizing the TD-BPM method using
the EFD-TD and the MEFD-TD, with main differences pointed
out. Section IV shows rigorous examinations for the numerical
techniques using three different and practical problems. First,
the method is applied to simple propagation of a pulsed

Gaussian beam in homogenous medium (nondispersive), and
the results are compared with analytical results. Then the
method is applied to dispersive linear guided-wave problems,
where the correct behavior of the wave can be predicted
analytically, and again the results are compared with the
theoretical predictions. Propagation of pulsed guided beams in
metallic waveguides and dielectric waveguides is considered.
Later in the section, the introduction of the PML technique,
as spatial boundary conditions, to the MEFD-BPM is shown
with a simple dielectric waveguide example. In Section V, the
simulation of pulsed optical beams in a dielectric-junction
waveguide is shown.

II. THEORY

We start with the scalar time-domain wave equation

(1)

where
position-dependent refractive index variation;
spatial Laplacian operator;
wave velocity in free space.

It is assumed that the vector nature of the field can be ignored,
which is a good first approximation for the paraxial problems
of the type considered here that is appropriate for the BPM
[15]–[17]. A carrier frequency and a propagation coefficient

in the direction of propagation are extracted from
as

c.c. (2)

where
;

reference refractive index;
c.c. complex conjugate of the expression preceding it.

Introducing the standard parabolic approximation by neglecting
second derivatives of the wavefunction with respect to the axial
coordinate , the scalar wave equation (1) becomes

(3)

As mentioned before, one of the interesting features of the
TD-BPM is the application of the moving time window
technique. A compact pulse eventually disappears from the
window after a certain number of propagation steps, where it
requires the computational window to be adjusted in time at
each propagation step so as to effectively move at the group
velocity of the pulse envelope. The substitution of a moving
time coordinate with arbitrary changes (3) to

(4)
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III. N UMERICAL TECHNIQES

A. The Explicit FD Time-Domain BPM

Using the central finite-difference approximations

(5)

to replace the partial derivatives in (4) leads to the second-order
accurate EFD-TD

(6)

where

, , and represent the discretization of, , and , respec-
tively. The discretized equation (6) is very similar to the clas-
sical CW equation [18]–[21], but with an additional transverse
variable ; if the field is time independent, then the EFD-TD
reverts to the CW case. The explicit propagation of the optical
field using the EFD-TD is straightforward since it involves a
multiplication of the input field with a very sparse matrix with
only five elements in each row, which makes the method very
efficient and highly parallel [20], [21]. As in [19], the stability

analysis of the algorithm can be found by searching for dis-
cretized plane wave solutions of (6) under the condition of a
uniform medium and determining conditions under which these
plane waves can have real propagation coefficients. The char-
acteristic equation for the propagation coefficientof such a
discretized plane wave

(7)

assuming that is independent of position, , and
, is

(8)

It is required that this equation have solutions for which
to permit real values of ; this shows that the

algorithm is stable under the condition

(9)

This is satisfied for all and if

(10)

B. The Modified Explicit FD Time-Domain BPM

From the CW numerical experience, accurate modeling of
practical optical devices requires that and be much
smaller than the optical carrier wavelength, resulting in a
very small propagation step size according to the above
condition in (10) [16]–[21]. However, if the field in
(6) is replaced by its average value [26]–[28]

(11)

this gives the following Du Fort–Frankel technique

(12)

where
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The Du Fort–Frankel (MEFD-TD) method is unconditionally
stable in a uniform medium with , in contrast to the con-
ditional stability of the standard explicit discretization in (10)
[28]. We may notice from the EFD-TD and the MEFD-TD equa-
tions [(6) and (12)] that the two methods require two initial fields
to start the propagation. It is known that the CW MEFD pro-
duces, for large longitudinal step size , little spurious fields
if the two initial fields are equal or excited with other BPMs
[28]. Two numerical solutions have been suggested to reduce or
eliminate the spurious field. If the initial field is a guided mode,
two initial fields and spaced by can be found
by multiplying with the appropriate phase factor to obtain

, assuming that the medium in the longitudinal direction
does not change. The other technique is to use two equal initial
fields with a very small initial step size increasing gradually
to the desired . As the initial decreases, the error of the
spurious field reduces [28]. The same behavior was observed
with the MEFD-TD.

There are three major advantages for the MEFD-TD over the
EFD-TD. The first is that the longitudinal step can be much
more relaxed than the condition in (10) where more than ten
times larger step size can be achieved with very little accuracy
degradation [28]. The second advantage is in using the leapfrog
arrangement [24], [27], [28], where the total mesh points of
the MEFD-TD can be divided into two equal sets (even and
odd) in which only one set could be used in the computation
while retaining the same accuracy. This gives the MEFD-TD a
further 50% increase in the speed per propagational step over
the EFD-TD. Experiments with both methods showed that the
EFD-TD becomes unstable if PML layers are introduced as an
absorbing boundary condition in the spatial dimension. On the
other hand, the PML can be used with the MEFD-TD algorithm,
as will be shown in the next section. In this work, the PML has
been used by representing the transverse spatial dimension with
a lossy coordinate as [29], [30]

(13)

where is the refractive index of the PML medium, which can
be chosen to be equal to that of the medium next to the PML
layer and is the conductivity of the PML layer.

IV. NUMERICAL ANALYSIS

In this section, we rigorously test the numerical techniques
discussed in Section III using three different practical problems.
The first is the propagation of a pulsed beam in free space; the
second is the propagation of pulsed guided modes in metallic
waveguides; and the third is the propagation of pulsed guided
modes in dielectric waveguides. Throughout the following sim-
ulations, a temporal pulse of the form

(14)

is considered and the initial field at is assumed to be equal
to

(15)

where scales the duration of the initial pulse in the time
domain and is the transverse spatial profile of the
pulsed beam at . In addition to the transverse spatial
boundary conditions, time-domain boundary conditions for the
fields are also required. It is also necessary to compensate for
the displacement of the pulse in the time window asadvances,
due to the motion of the envelopeat the group velocity. For
simplicity, unless otherwise stated, the spatial boundary con-
ditions on a rect-
angular boundary surrounding the structure have been chosen.
This is used in simulations that involve no scattering effects, and
the field is expected to be zero at the spatial boundary. We have
investigated two simple methods of applying temporal boundary
conditions. The first involves what is called a moving window
technique. Zero boundary conditions at
are applied in the relative time window (coordinate) while
moving in the absolute time frame (coordinate) with the ve-
locity of the pulse, so that the relative motion of the pulse in
the time window is eliminated. On the other hand, the required
group velocity is not known in advance of the computation
for a number of optical propagation problems, and has to be
generated dynamically as the propagation progresses. Incorrect
movement to the time window results in the disappearance of
the pulse from the numerical window after a certain number of
propagation steps. Another interesting technique is the applica-
tion of periodic boundary conditions at the ends of the relative
time window, so that a pulse leaving the window at one side
simply reenters at the other side even if the correct velocity is
not known precisely. Both of these techniques were tested and
proved quite workable and efficient; they both permit the time
window to be of a finite extent 2 on the order of a few
pulse widths.

Experimental results for the two techniques (the EFD-TD and
the MEFD) showed that they both converge to a similar result
when both use the same longitudinal , where for the
EFD-TD is below the stability condition of the algorithm. The
same behavior was confirmed in the CW cases [28]. To con-
centrate on the temporal aspect of characterizing the methods,
the MEFD-TD will always be excited with a small and uniform

that ensures the reduction/elimination of any spurious field
mentioned before. Comparison between the results of the two
techniques will be shown later in the section (see Fig. 4).

A. Homogenous and Nondispersive Medium

In the first example, a pulsed Gaussian beam is propagated
in a two-dimensional ( and ) free-space medium using the
TD-BPM, and the numerical results are compared with analyt-
ical results. With an initial spatial Gaussian waist at ,
the evolution of each frequency component of the spectrum of
the wavefunction in free space is given in the frequency domain
as [31]

(16)
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Fig. 1. The evolution of the pulsed Gaussian beam in free space using the EFD-TD. The initial Gaussian waist wasw = 2:5 �m, an initial pulse width of
� = 50 fs, and� = 1:0 �m. The reference refractive index was chosen to ben = 1:0,�x = 0:1 �m,�� = 1:0 fs, and�z = 0:025 �m. A moving time
window was used to follow the pulse.

for , where the waist, the radius of curvature, the phase
term, and the diffraction length, respectively, are given by

The evolution of a pulsed Gaussian beam in free space can be
found from (16) by the inverse Fourier transform of the product
of and the Fourier transform of (14), which can be written as

(17)

where is the Fourier transform of (14) (see [31] for de-
tails). This technique was used to validate the results of the
TD-BPM where a computer program, using FFT, was developed
to find the electric field at any propagation distance. Fig. 1
shows plots for the field of a pulsed Gaussian beam that has
been propagated to a distance of m using the EFD-TD.
The initial spatial Gaussian waist was m, the initial
pulse width fs, and the wavelength of the carrier fre-
quency m. The reference refractive index was chosen
to be . In general, we have observed that the results
of Fig. 1 are very similar to the results of the MEFD-TD and

Fig. 2. The percentage maximum error in the field at a distance ofz = 30 �m
as a function of (a) the time step size�� and (b) the initial pulse width� .
Other parameters are the same as those of Fig. 1.

of (17). The figure shows that the waist spreads to a value of
m, which agrees with the analytical re-

sults. On the other hand, the pulse width in the time domain
is unchanged, which is predicted by the analytical results be-
cause the medium is nondispersive. A moving window in the
time domain was used to follow the propagation of the pulse
in free space. The window was moved with the group velocity,
which is equal to the phase velocity of light in free space for this
particular example. Other tests were made on the numerical pa-
rameters of the method (i.e., , , and ). The free-space
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Fig. 3. The two-dimensional metallic waveguide used in the analysis.

Fig. 4. The percentage relative error of the pulse width versus the carrier wavelength for different initial pulse widths using the EFD-TD and the MEFD-TD. The
calculations were performed atz = 332 �m with " = 1:0 and� = 1:0.

case showed that the method is not sensitive to the change in
and , provided that is below the limit of stability in

(10) (with ). Fig. 2(a) shows the percentage maximum
error in the field as a function of . From the figure, it is clear
that the technique converges as decreases. Fig. 2(b) shows
the effect in reducing the initial pulse width. It is clear from the
figure that the method cannot cope with ultrashort pulses, and
this limitation will be understood from the following examples.

B. Metallic Waveguide

To test the TD-BPM in waveguide problems, a two-dimen-
sional ( and ) metallic waveguide, shown in Fig. 3, was used
for that purpose. The metallic waveguide was chosen because
of the availability of theoretical predictions. It is known that the
cutoff frequency of this waveguide depends on the width of the
waveguide as [32]

(18)

where and the cutoff wavelength
measured at the velocity of light in the material between the two
metallic waveguides. The material of the waveguide, between

the two mirrors, was taken to be free space. The phase velocity
of the guided mode is given as

(19)

with a propagation constant

(20)

and the exact group velocity of the signal can be calculated as

(21)

Consider a pulsed first guided mode ( ) to propagate inside
the structure of Fig. 3. The temporal pulse width at a distance
can be measured as [32]

(22)

where the dispersion term can be calculated from (21) using the
following relation:

(23)
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Fig. 5. The two-dimensional slab dielectric waveguide used in the analysis.n = 1:2; n = n = 1:0; and� = 1:0 �m.

Fig. 6. The input field used in the analysis. The field consists of a pulsed first guided mode with an initial pulse width of� = 100 fs. The total time window
used was 600 fs (for clarity only 400 fs is shown), and the two vertical lines show the position of the slab waveguide withd = 1 �m.

For a waveguide width of m, the cutoff wavelength
m and the first guided mode in the transverse di-

rection can be written as . Numerical
observations of the TD-BPM showed that the reference prop-
agation coefficient should be chosen to be equal to the
propagation coefficient of the guided mode in order that
the pulse travels with the correct velocity and hence be sta-
tionary in the relative time window. The group velocity was
measured numerically by calculating the velocity of the pulse
peak and then compared with (21). Fig. 4 shows the relative

error in percent versus the carrier wavelength at m
for different initial pulse widths using the MEFD-TD and
EFD-TD. The results of the EFD-TD are those appearing in
[25]. As mentioned earlier, the figure shows that the results
of the EFD-TD and MEFD-TD are very similar. It is to be
mentioned that increasing the carrier wavelength will increase
the propagation angle , with respect to the
axial direction, of the guided plane waves forming the mode
inside the waveguide, making the mode less paraxial. On the
other hand, increasing the wavelength decreases the number



766 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 19, NO. 5, MAY 2001

Fig. 7. The percentage maximum error in the field at a distance ofz = 200 �m as a function of the spatial step size�x using the MEFD-TD with� = 100

fs,�� = 2:0 fs, and� = 1:0 �m.

Fig. 8. The evolution of the pulsed first guided mode in the slab dielectric waveguide of Fig. 5 using the MEFD-TD. The reference refractive index was taken to
be the effective index of the mode.d = 1 �m,�x = 0:05 �m,�� = 2:0 fs, and�z = 0:008 �m. A moving time window was used to follow the pulse.

of carrier cycles under the temporal pulse. The figure shows
that as the axial angle increases, the relative error increases
due to the loss of paraxiality. The figure also shows that in-
creasing the initial pulse width will decrease the error. It is
clear that the wider the optical pulse (more carrier cycles),
the less the paraxial error.

C. Dielectric Waveguide

In this section, we apply the TD-BPM to simulate the prop-
agation of a temporal pulse in optical dielectric devices. Again,
the results are validated with theoretical predictions. We have
considered a symmetric dielectric slab waveguide, shown in
Fig. 5, with a carrier optical wavelength of m. The
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Fig. 9. The percentage relative error of the pulse width, at a distance of half a millimeter (z = 500 �m), as a function of the initial pulse width� for three
different slab thicknessesd in �m (of Fig. 5) using MEFD-TD.

Fig. 10. The propagation of the spatial field using MEFD-TD along the slab dielectric waveguide of Fig. 5 for different spatial PML thickness�. The fields
shown are the input and the propagated fields every 10�m shifted by one from each other for clear presentations. The vertical lines show the position of the slab
waveguide. (a)� = 0 �m (zero boundary conditions), (b)� = 0:5 �m, (c)� = 1:0 �m, and (d)� = 2:0 �m.

slab waveguide was excited with a pulsed first guided mode
shown in Fig. 6 that has a slab width m. The tem-
poral input pulse was propagated to a distance of m,
and then the pulse width is compared with the theoretical value
of (22). The dispersion term that appears in this equation was
computed numerically from the dispersion relation of a dielec-
tric slab waveguide [33]. Fig. 7 shows the percentage maximum

error in the field, at a distance of m, as a function
of the spatial step size using the MEFD-TD. The conver-
gence of the MEFD-TD with the reduction of is clearly
demonstrated in the figure. On the other hand, Fig. 8 shows the
evolution of the pulsed first guide mode along the slab wave-
guide, of Fig. 5, at different propagational distances using the
MEFD-TD. As expected, the figure shows no radiation during
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Fig. 11. (a) Comparison between the normalized fields of Fig. 10(c) and Fig. 10(d) at steady state (z = 200 �m) and the first guided mode analytical solution.
The three fields are indistinguishable. (b) A 1% portion from (a) above shows the three fields closely.

Fig. 12. The two-dimensionalY -junction dielectric waveguide used in the analysis. The main waveguide is that appearing in Fig. 5, and the branched waveguides
are single modes with� = 1:0 �m andn = 1:2.

propagation where the mode in the transverse direction propa-
gates smoothly, and therefore, zero spatial boundary conditions

were used for this simulation. For the purpose of careful anal-
ysis, Fig. 9 shows the percentage relative error as a function of
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Fig. 13. Field plots for the simulation of theY -junction of Fig. 12 using MEFD-TD. The input is that of Fig. 5, and the simulation is for a symmetricY -junction
with angles� = � = 2.5 . Note that the full window is not shown for clear presentation. The vertical lines on the plots show the analytically predicted positions
of the slab waveguides. A moving window was used to follow the pulse.�x = 0:05 �m,�� = 2:0 fs, and�z = 0:008 �m.

the initial pulse width for three different waveguide widths
using the MEFD-TD. The waveguides were excited with their

respected pulsed first guided modes. It has to be noticed that
changing the width of the waveguide changes the angle of the
guided mode. The three slab widths were 0.5, 1.0, and 4.0m
corresponding to mode angles of 23.7, 16.1 , and 5.3, respec-
tively. It is clear from Fig. 9 that the error associated with the
initial pulse width is much more pronounced than that associ-
ated with the mode angle. It is to be remembered again that as
the pulse width increases, the number of cycles under the
temporal pulse also increases. The results that appear in Fig. 9
are similar to those appearing in [25], which uses the EFD-TD.
We may conclude that the technique can easily handle pulses
as short as 100 fs for half a millimeter distance with a relative
error of less than 3%; the error decreases by increasing the ini-
tial pulse width. The efficiency of the MEFD-TD is quite re-
markable with a speed around 0.12 s per propagational step
for the simulation of Fig. 8. This is measured on an average
233-MHz Pentium II PC, which means that the whole simula-
tion takes around 25 min to complete.

D. Perfectly Matched Layer

The PML equation given in (13) was used at the transverse
spatial dimensions as absorbing boundary conditions. In the
PML region, the following graded conductivity distribution is
considered [30]:

(24)

where is the thickness of the PML layer at one side andis
the distance measured from the interface between the PML layer

and the computational space. The PML medium is terminated by
a simple perfectly conducting wall [29]. The maximum conduc-
tivity can be found by requiring the reflection coefficient
for the plane wave incident on the interface perpendicular to
(PML region)

(25)

to be smaller than a given value [30]. To examine the perfor-
mance of the above technique, a pulsed spatial Gaussian optical
beam was excited inside the slab dielectric waveguide of Fig. 5
with a slab width of m and a carrier wavelength of

m. The initial Gaussian waist was m
and a temporal pulse width of fs. Fig. 10 shows the
propagation of the spatial field using the MEFD-TD along the
slab waveguide for different spatial PML thickness. The fields
shown are the transverse spatial fields at the peak of the pulse.
In the figure, the fields are the input and the propagated fields
every 10 m shifted by one from each other for clear presen-
tations. The maximum conductivity used in all cases was equal

. Comparison among all the results
shows the superiority of the PML layer with m, where
the first guided mode of the structure is clearly excited. In addi-
tion, Fig. 11 shows a comparison between the normalized trans-
verse spatial fields at steady state ( m) for the cases
of and m of the PML and the first guided mode
analytical solution. The three fields in Fig. 11(a) are indistin-
guishable from each other even when 1% of the total field is
enlarged [Fig. 11(b)].
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Fig. 14. The simulation is for an asymmetricY -junction with angles� = 0.0 and� = 2.5 . Other parameters are the same as those appearing in Fig. 13.

V. APPLICATION: -JUNCTION

In this section, the MEFD-TD has been applied to a two-di-
mensional dielectric -junction waveguide, shown in Fig. 12.
The combined waveguide supports two guided modes while
each of the branched waveguides is a single mode at the car-
rier wavelength m. The pulsed first guided mode of
Fig. 6 was excited at the input of the structure and allowed
to propagate inside the -junction. Fig. 13 shows the simula-
tion of a symmetric -junction when the branched angles are

2.5 . The figure shows field plots for the propaga-
tion of the pulsed beam at several distances. Complete symmet-
rical behavior is observed along the line of symmetry, which is
at m. The lines appearing on the plots are showing
the position of the analytically predicted positions of the waveg-
uides. It is to be noticed that in both waveguides, the first guided
mode of the new waveguide has been excited where the peak of
the mode is appearing in the middle of the guide. In modeling the

-junction, PML layers were used at the spatial boundary with
m and m . Fig. 14 shows the

simulation of an asymmetric-junction using the same parame-
ters of Fig. 13 except that the branched angles are not equal with

and 2.5 . Clearly, the figure shows an asym-
metric propagation for the new modes inside the asymmetric

-junction.

VI. CONCLUSION

A novel technique to model pulsed optical beams has
been introduced and analyzed using linear nondispersive and
dispersive examples that have analytical predictions. The
derivation, the discretization, and the numerical analysis of the
time-domain beam propagation method have been shown in

detail. We have used the explicit finite-difference and the Du
Fort–Frankel approaches to discretize the TD-BPM equation,
where comparisons between these techniques were also given.
The methods were applied to homogenous medium, metallic,
and dielectric waveguides; and excellent accuracy results have
been observed. It is also shown, similar to their CW counter-
part, that both techniques are simple, efficient, and suitable
for parallel implementations, especially for 3-D devices. In
addition, it was shown that MEFD-TD is more efficient than
EFD-TD, where PML layers were used as spatial boundary
conditions with MEFD-TD. Then TD-BPM was successfully
applied to simulate a dielectric -junction structure. It was
concluded that the new TD-BPM is particularly well suited to
the study of unidirectional propagation of compact temporal
pulses over long distances in a guided-wave environment. Fu-
ture work will focus on the extension of the method to include
a wide-angle technique that removes the paraxial limit imposed
on the method. In addition, the technique will be examined
in the presence of material dispersion, nonlinear parametric
optical interactions of and , where the time-domain
method is essential in order to study the propagation of intense
ultrashort pulses.
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