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Efficient Time-Domain Beam-Propagation Method
for Modeling Integrated Optical Devices

Husain M. Masoudi, Muhammad A. Al-Sunaidi, and John M. Arnold

Abstract—A new efficient technique that models the behavior be analyzed, in principle, using the finite-difference time-do-
of pulsed optical beams in homogenous medium, metallic and main (FDTD) method [1]-[5]. The technique was used to model
dielectric waveguides, is introduced and verified using both linear ,_gimensional optical waveguides and showed to be suitable
nondispersive and dispersive examples that have analytical predic- t lect ti bl . ticul . d
tions. Excellent accuracy results have been observed. The method 0 sfome N ?C romagnetic pro gms In particu ar. Inicrowave an
is called time-domain beam-propagation method (TD-BPM) oOptical devices [1]-[8]. While this method combines features of
because it is similar to the classical continuous-wave BPM with scattering problems, it requires enormous computer resources
additional time dependence. The explicit finite difference and (execution time and memory) even for simple two-dimensional
the Du Fort—FrankeI appro'aches were used to dlscrt_atlze the structures [5]-[8]. For a typical 3-D optical waveguide of spa-
TD-BPM equation. Comparisons between these techniques aret. I si d1 by 10 d3 int tion | th
also given with the application of the perfectly matched layers as Al SIZES aroun. pm by /j‘m an .mm interaction ieng o
spatial boundary conditions to the Du Fort—Frankel. Then the the FDTD requires\/30 spatial step size that keeps numerical
TD-BPM was successfully applied to model a two-dimensional dispersion at its minimum, wherg is the guide wavelength
dielectric ¥-junction. It is concluded that the new technique is [34]. This results in300 x 300 x 90000 = 8.1 x 10° nu-
;nsorgcgﬁlcﬁnﬁqghda;irt,hﬁ;,-ragISOQ?;|f?ét\(,eiggerence TD method,  merical cells for an optical wavelength of = 1 um. The

P y glarge op ' FDTD consumes 24 memory words per cell, which makes the

. . ; . . ~total memory 1.944¢ 10'! words. It is to be noted that these
ence analysis, modeling, numerical analysis, optical wavegwdef. . ith the d Yofin additi the total
theory, partial differential equation, pulse propagation, time 'gw_es 'n(?rease wi e ecre.ase. ng “onj e lota
domain (TD). efficiency is dependant on the time iterations. It is known that

the Courant-Friedrichs and Lewy (CFL) stability requirements
[1]-[5], [34] restrict the time step size to

Index Terms—Beam-propagation method (BPM), finite-differ-

. INTRODUCTION

HE INTEGRATION of a large number of optical devices, 1 1 1 1 172
for processing optical communication signals, makes the At < Cons | AT2 - Ay? - A2
ability to analyze, understand, and predict the behavior of such
circuits a difficult task that needs to be resolved. There arendnich is equal to 0.06 fs for the parameters given above.
number of reasons for this difficulty. First, many of the opticaConsidering a Gaussian time pulse of 100-fs half-pulse width
devices are designed on the basis of nonlinear optical interactamd a time window of 600 fs for only the total pulse to be fully
of x(® or x(® responses of the material, which require carefeixcited inside the problem space, which gives 10 000 time steps.
understanding due to the complexity of these phenomena. Thkviously, this would overwhelm existing high-performance
second reason is that most of the applications require pulsed opmputer machines (supercomputers) [20]-[24]. To overcome
tical beams rather than continuous-wave (CW) operation, wheéhese difficulties, considerable work has been done to model
less progress is made to analyze time-domain (TD) problemsdévices using only one unknown field (based on the wave
is worth mention that in most cases, analyzing TD interactioegjuation) rather than six unknown fields (based on Maxwell's
is more difficult than CW problems because of the large speeguations) as in the FDTD [9]-[14]. This will result in a large
trum of frequencies involved in the TD. The third, and probsaving in terms of computer execution time and storage space,
ably the most important, reason is that most of these devieespecially for three-dimensional analysis. Recently, slow
are of a three-dimensional (3-D) nature with length of intewave simulators have been proposed that depend on slowly
action taking place over *optical wavelength or longer. For time-varying envelope variation [9]-[13]. These techniques are
these reasons, efficient algorithms are required to analyze saci suitable for modeling pulse propagation, which requires
devices accurately. Pulse propagation in optical structures ¢hae fast variation of the pulse envelope to be accounted for.
A more interesting approach [14] uses Fourier analysis to
Manuscript received January 4, 2000; revised September 26, 2000. Thisw@q(\/ance the pulse using the beam-propagation method (BPM)
was supported by King Fahd University of Petroleum and Minerals, Dhahragtyle [15]—[17]. The technique writes the wave equation in the
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solve the time-domain wave equation will lead to a simple ar@aussian beam in homogenous medium (nondispersive), and
efficient technique to accurately analyze pulse propagatitime results are compared with analytical results. Then the
in optical waveguides. The CW EFD-BPM is known for itanethod is applied to dispersive linear guided-wave problems,
simplicity, high efficiency, accuracy, and suitability for parallelvhere the correct behavior of the wave can be predicted
implementations especially for modeling three-dimensionahalytically, and again the results are compared with the
optical devices [18]-[21]. In addition, the technique provetheoretical predictions. Propagation of pulsed guided beams in
to be very reliable in modeling three-dimensional devicesetallic waveguides and dielectric waveguides is considered.
containing second-order nonlinear optical interactiony6? Later in the section, the introduction of the PML technique,
[22]-[24]. as spatial boundary conditions, to the MEFD-BPM is shown
The proposed time-domain BPM (TD-BPM) involves writing/ith a simple dielectric waveguide example. In Section V, the
the time-domain wave equation as a one-way paraxial equatiifulation of pulsed optical beams in a dielectriejunction
for the propagation along the axial directien This arrange- Waveguide is shown.
ment has the advantage of allowing the numerical time window
to follow the evolution of the pulse and hence minimizes the [I. THEORY

computer storage of the problem as well as the execution timeWe start with the scalar time-domain wave equation
The real-valued scalar wavefunctigns factored into a product

of the carrier frequency oscillation and a complex modulating 2 n? 5
envelope? in the form Vi - ga”/’ =0 @
P(x, t) = U(x, t)e™e ! 4 U*(x, t)e kit where
n =n(x) position-dependent refractive index variation;
and getting the wave equation for the complex enveldpe V2 spatial Laplacian operator;
Applying paraxial approximation to the wave equation, by ne- ¢, wave velocity in free space.

glecting derivatives with respect to the axial dimensidngher |t is assumed that the vector nature of the field can be ignored,
than the first derivatives while keeping all time variation intactyhich is a good first approximation for the paraxial problems
leads to a one-way propagation of a BPM style equation. Thi$ the type considered here that is appropriate for the BPM
makes the time dependence of the complex envelope, as if1i5]-[17]. A carrier frequencw and a propagation coefficient
another transverse variable in addition to the two spatial dime— k_n, in the direction of propagation are extracted frgm
sions. Itis to be noticed that the propagation is essentially in oag
direction,> = 40, but the complex envelope is not necessarily ) ‘
assumed to be slowly varying in timéWe have used the EFD to P = W™t 4 cc. (2)
discretize the time-domain BPM equation (an early result of this
technique [EFD-TD] was reported in a communication letté¥here
[25]). On the other hand, we have also found that modifying the ko w/c,;
EFD-TD equation, using the Du Fort—Frankel approach [26], %  reference refractive index;
improves the efficiency of the technique while retaining the C¢-C.  complex conjugate of the expression preceding it.
same accuracy and features [24], [27], [28]. Throughout the féitroducing the standard parabolic approximation by neglecting
lowing, for simplicity we will refer to the Du Fort—Frankel tech-second derivatives of the wavefunction with respect to the axial
nique as modified EFD-TD (or MEFD-TD). The advantages ¢foordinatez, the scalar wave equation (1) becomes
the MEFD-TD over the EFD-TD are: 2
1) the longitudinal steg\z can be relaxed more; 2 <k‘3z\lf +— koat\lf> + (n?k2 - K*)¥
2) the total mesh points can be divided into two equal sets, Co
where only one set can be used for computation (50%
saving) and the same accuracy is retained;
3) perfectly matched layers (PMLs) can be used as an ab- . i }
sorbing spatial boundary condition. As mentioned before, one of the interesting features of the

Some of these advantages have been observed with the tE 'B'.DM |sAthe applltcau?n of thte r|r|10\:j|_ng time Wf'ndOV\;h
MEFD [24], [27], [28]. The purpose of this paper is to char-eehnique. A compact pulse eventually disappears from the
ndow after a certain number of propagation steps, where it

acterize the TD-BPM as a new technique for modeling pulsg\ﬂ

optical beams using both the EFD-TD and the MEFD-TD angauires the computational window to be adjusted in time at

to look at the prospect of analyzing long 3-D optical devices.each _propagatlon step so as to effecnvely move at the group
elocity of the pulse envelope. The substitution of a moving

In the next section, the time-domain method (TD—BPM? dinate. —  — v—L with arbit h 3t
equations will be derived from the wave equation. Section /"€ coordinater =¢ — v,z with arbitraryw, changes (3) to

shows the details of discretizing the TD-BPM method using 1 1
the EFD-TD and the MEFD-TD, with main differences pointed 2 {kaz\lf + ks <— - —) 8T\If}
out. Section IV shows rigorous examinations for the numerical © Y

techniques using three different and practical problems. First,
the method is applied to simple propagation of a pulsed

n’ 2 2
——28t\I/+VL\I/=0. 3)

(el

2
H(n2k2 — K2 — 72—2 U +VEU=0. (4)

o
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[Il. NUMERICAL TECHNIQES analysis of the algorithm can be found by searching for dis-
A. The Explicit FD Time-Domain BPM cretized plane wave solutions of (6) under the condition of a
' uniform medium and determining conditions under which these

Using the central finite-difference approximations plane waves can have real propagation coefficients. The char-
1 acteristic equation for the propagation coefficighof such a
9.¥(z, y, 2, 7) = 97z (V(z,y, 2+ Dz, 7) discretized plane wave
— Uz, y, 2 — Az, 7)) U = exp(ifBsAz) exp(iv,m, Az)
1 . .
O V(x, y, 7, T) = AT (U(x, y, 2, 7+ AT) - exp(ivymy Ay) exp(—iQm, AT) (7)
T
— Uz, y, 2, 7 — AT)) assuming that is independent of positior, nk, = k, and
1 Vg = ¢, IS
2 —
T l(w, y, 2 1) = L5 (W, y, 2,7+ A7) J(pEnAAzY _dsin? 30Ar  dsin’ §, A
+ Wz, y, 2, T — AT) Az c2A7? Ax?
_ 4sin? Iy, A
20(z, y, 2, 7)) +4SIHAQZJ Y—0. @)
Y
VQ\I/??“? —\Ij—’_Avv“v . . . . . .
LYy, 2 ) = Ag? (¥ T Yy 7 7) It is required that this equation have solutions for whieh <
+ Uz — Az, y, 2, 7)) sin fAz < 1 to permit real values off; this shows that the
1 algorithm is stable under the condition
— (U Ay, z
* Ay? (U, y + Ay, 2,7) k 2sin? %QAT 2 sin? —’ymAa: 2 sin? —’yyAu
+ Uz, y— Ay, 7, 7) A: ST A 87 T A
k
1 1
-2 <m + p) V(z,y, z,7) (5) < Az’ ©)
hi tisfied for alf2, ~, and~, if
to replace the partial derivatives in (4) leads to the second- orJ Is is satisfied for alk2, ~, and, |
accurate EFD-TD 2 2 _k 2 Kk (10)
Azx? T Ay? T A AT T Az
Upj,m(z +Az) =W, j m(z — Az)
+ 0z [Vp1, ,m(2) + Ypi1, 5, m(2)] B. The Modified Explicit FD Time-Domain BPM
Fay [y i1 m(2) + Uy 41 m(2)] From the CW numerical experience, accurate modeling of
’ ’ practical optical devices requires thatr and Ay be much
+ ar [Wp, j,m—1(2) + ¥p,j, mt1(2)] smaller than the optical carrier wavelength, resulting in a

very small propagation step siz®z according to the above

TT\P g, m— z) — ¥ J,m <
+ arr [Yp, 5, m—1(2) podmt1(2)] condition in (10) [16]-[21]. However, if the fiel@,, ; (z) in

+bp U, i m(2) (6) (6) is replaced by its average value [26]-[28]
where Wy iom(2) = [Up jom(z+A2) + U, ; m(z— A2)] /2 (11)
a. —— Az o = %= a = %= this gives the following Du Fort—Frankel technique
- ikon,’ ~ Ag? YAy
“n2 a iwon? .a Uy, 5,m(z + Az) =cp jVp j m(z — Az)
— P,y = — P,3 % .
T T aA . AT +dp i (-1, 5,m(2) + ¥pt1, 5, m(2)]
2 2 20 +dy m—1(2) + Wi m
bp,j =@ A2 A 2+02A72+k2( J_”z) . pd[ pgim=1(7) +(2)]
Y + f [Wp, j,m-1(2) + ¥y, j,my1(2)]
p, j, andm represent the discretization of y, andr, respec- + For [y jome1(2) = Uy i a1 (2)]
tively. The discretized equation (6) is very similar to the clas- (12)

sical CW equation [18]-[21], but with an additional transverse

variabler; if the field ¢ is time independent, then the EFD-TDwhere

reverts to the CW case. The explicit propagation of the optical

field using the EFD-TD is straightforward since it involves a  ¢p,; = (2+bp,5) /(2= 1y, 5)
multiplication of the input field with a very sparse matrix with =24,/ (2~ by, ;) dy —2a,/ (2 -
only five elements in each row, which makes the method very i * b3z Y
efficient and highly parallel [20], [21]. As in [19], the stability fr=2a;/ 20 ,), fTT =2a,-/(2—-0p ;).

P:J)
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The Du Fort-Frankel (MEFD-TD) method is unconditionallywhere =, scales the duration of the initial pulse in the time
stable in a uniform medium with? = »2, in contrast to the con- domain and¥,(z, ) is the transverse spatial profile of the
ditional stability of the standard explicit discretization in (10pulsed beam at = 0. In addition to the transverse spatial
[28]. We may notice from the EFD-TD and the MEFD-TD equaboundary conditions, time-domain boundary conditions for the
tions [(6) and (12)] that the two methods require two initial fieldfelds are also required. It is also necessary to compensate for
to start the propagation. It is known that the CW MEFD prahe displacement of the pulse in the time window aslvances,
duces, for large longitudinal step si2ez, little spurious fields due to the motion of the envelople at the group velocity. For
if the two initial fields are equal or excited with other BPMssimplicity, unless otherwise stated, the spatial boundary con-
[28]. Two numerical solutions have been suggested to reduceddfons ¥ (+M, Az, £M,Ay, sAz, m.Ar) = 0 on a rect-
eliminate the spurious field. If the initial field is a guided modeangular boundary surrounding the structure have been chosen.
two initial fields ¥(0) and V(A=) spaced byAz can be found This is used in simulations that involve no scattering effects, and
by multiplying ¥(0) with the appropriate phase factor to obtairthe field is expected to be zero at the spatial boundary. We have
W(Az), assuming that the medium in the longitudinal directiomvestigated two simple methods of applying temporal boundary
does not change. The other technique is to use two equal initahditions. The first involves what is called a moving window
fields with a very small initial step sizAz increasing gradually technique. Zero boundary conditiods= 0 atT = +M, A7
to the desired\z. As the initial Az decreases, the error of theare applied in the relative time window (coordinatgwhile
spurious field reduces [28]. The same behavior was observadving in the absolute time frame (coordinajewith the ve-
with the MEFD-TD. locity of the pulse, so that the relative motion of the pulse in
There are three major advantages for the MEFD-TD over thige time window is eliminated. On the other hand, the required
EFD-TD. The first is that the longitudinal stejpz can be much group velocityv, is not known in advance of the computation
more relaxed than the condition in (10) where more than téor a number of optical propagation problems, and has to be
times larger step size can be achieved with very little accuraggnerated dynamically as the propagation progresses. Incorrect
degradation [28]. The second advantage is in using the leapfragvement to the time window results in the disappearance of
arrangement [24], [27], [28], where the total mesh points dfie pulse from the numerical window after a certain number of
the MEFD-TD can be divided into two equal sets (even amitopagation steps. Another interesting technique is the applica-
odd) in which only one set could be used in the computatidgion of periodic boundary conditions at the ends of the relative
while retaining the same accuracy. This gives the MEFD-TDtame window, so that a pulse leaving the window at one side
further 50% increase in the speed per propagational step osinply reenters at the other side even if the correct velocity is
the EFD-TD. Experiments with both methods showed that timet known precisely. Both of these techniques were tested and
EFD-TD becomes unstable if PML layers are introduced as proved quite workable and efficient; they both permit the time
absorbing boundary condition in the spatial dimension. On tie@ndow to be of a finite extent 2. A+ on the order of a few
other hand, the PML can be used with the MEFD-TD algorithnpulse widths.
as will be shown in the next section. In this work, the PML has Experimental results for the two techniques (the EFD-TD and
been used by representing the transverse spatial dimension with MEFD) showed that they both converge to a similar result

a lossy coordinate as [29], [30] when both use the same longitudinak, where Az for the
EFD-TD is below the stability condition of the algorithm. The
P = <1 W Iz ) (13) same behavior was confirmed in the CW cases [28]. To con-
WeoMyp centrate on the temporal aspect of characterizing the methods,

wheren, is the refractive index of the PML medium, which carth® MEFD-TD will always be excited with a small and uniform

be chosen to be equal to that of the medium next to the PM}z that ensures the reduction/elimination of any spurious field
layer ands, is the conductivity of the PML layer. mentioned before. Comparison between the results of the two

techniques will be shown later in the section (see Fig. 4).

IV. NUMERICAL ANALYSIS

. . . . . A. Homogenous and Nondispersive Medium
In this section, we rigorously test the numerical techniques

discussed in Section |1l using three different practical problems. In the first example, a pulsed Gaussian beam is propagated
The first is the propagation of a pulsed beam in free space; the2 two-dimensional£ and z) free-space medium using the
second is the propagation of pulsed guided modes in metalli®-BPM, and the numerical results are compared with analyt-
waveguides; and the third is the propagation of pulsed guidiégl results. With an initial spatial Gaussian waistat z = 0,
modes in dielectric waveguides. Throughout the following sintbe evolution of each frequency component of the spectrum of

ulations, a temporal pulse of the form the wavefunction in free space is given in the frequency domain
) as [31]
F(r) =exp{— (=) } a9 v
Tto U(z, 2, w) =V,—>
w(z)

is considered and the initial field at= 0 is assumed to be equal

to - exp {L [kz —n(2)] — 2° [le(z) - 21:22)} }
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Fig. 1. The evolution of the pulsed Gaussian beam in free space using the EFD-TD. The initial Gaussian wajst=wass pm, an initial pulse width of
010 = 50 fs, andA = 1.0 um. The reference refractive index was chosen tabe= 1.0, Az = 0.1 um, A7 = 1.0 fs, andAz = 0.025 gm. A moving time
window was used to follow the pulse.

for z <« z,, where the waist, the radius of curvature, the phasi 15

term, and the diffraction length, respectively, are givenby : :
(ITIY R R S i
A\’ 22 E :
w?(z) =w? 1+< 2) ] =w? <1+72> 2 :
Yy 4 . .
o o ) R R LR R
Tw, z; 2 =
R(z) =2 1+<)\Z>]=Z<1+22> L % 1
2 Time step size (fs)
Az z < 304 , , : . ,
7) = tan™? =tan™! [ = = b
(z) = tan <7rw3> " <7) 2 ®
[ L0 o R R I S R R R LR
mwy _ (wg §
o = = — W =
A 2¢c R R e R R TR SRR R CRRRRECTARRE SRR,
. : . =
The evolution of a pulsed Gaussian beam in free space can 5 : : :
5 ; : s ; 4

found from (16) by the inverse Fourier transform of the produc it 9 15 20 25 30 35 40 45 50
of ¥ and the Fourier transform of (14), which can be written a Initial Pulse width (fs)

1
Uz, z, t) = 2—/
T

— o0

—
o

oo

Uz, 2. DVEF (e ™t dw 17 Fig. 2. The percentage_maximum _errorinthefield at _a_distanze:oBO um
(&, 2, W) F(w) 17 as a function of (a) the time step sizer and (b) the initial pulse widtl..,.
Other parameters are the same as those of Fig. 1.

where I(w) is the Fourier transform of (14) (see [31] for de-

tails). This technique was used to validate the results of thé&(17). The figure shows that the waist spreads to a value of
TD-BPM where a computer program, using FFT, was developed30 pm) = 4.565 pm, which agrees with the analytical re-
to find the electric field at any propagation distance=ig. 1 sults. On the other hand, the pulse width in the time domain
shows plots for the field of a pulsed Gaussian beam that Hasunchanged, which is predicted by the analytical results be-
been propagated to a distance:of 30 xm using the EFD-TD. cause the medium is nondispersive. A moving window in the
The initial spatial Gaussian waist wag = 2.5 um, the initial time domain was used to follow the propagation of the pulse
pulse widtho,,, = 50 fs, and the wavelength of the carrier fre4in free space. The window was moved with the group velocity,
quencyX = 1.0 um. The reference refractive index was chosewhich is equal to the phase velocity of light in free space for this
to ben, = 1.0. In general, we have observed that the resulparticular example. Other tests were made on the numerical pa-
of Fig. 1 are very similar to the results of the MEFD-TD andameters of the method (i.e\z, A7, andAz). The free-space
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Fig. 3. The two-dimensional metallic waveguide used in the analysis.
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Fig. 4. The percentage relative error of the pulse width versus the carrier wavelength for different initial pulse widths using the EFD-TD and-{hB MEED
calculations were performed at= 332 pm withe, = 1.0 andg, = 1.0.

case showed that the method is not sensitive to the changehia two mirrors, was taken to be free space. The phase velocity
Az and Az, provided thatAz is below the limit of stability in of the guided mode is given as

(10) (with Ay — o0). Fig. 2(a) shows the percentage maximum w v
error in the field as a function akr. From the figure, it is clear =G NS (19)
that the technique converges As decreases. Fig. 2(b) shows c

the effect in reducing the initial pulse width. It is clear from thavith a propagation constant

figure that the method cannot cope with ultrashort pulses, and w

this limitation will be understood from the following examples. p= VI (we/w)? (20)

) i and the exact group velocity of the signal can be calculated as
B. Metallic Waveguide
d
To test the TD-BPM in waveguide problems, a two-dimen- Vg = & /1 — (we/w)?. (21)
. ) > g dsp
sional (¢ andz) metallic waveguide, shown in Fig. 3, was used
for that purpose. The metallic waveguide was chosen beca@xmsider a pulsed first guided mode=£ 1) to propagate inside
of the availability of theoretical predictions. It is known that théhe structure of Fig. 3. The temporal pulse width at a distance
cutoff frequency of this waveguide depends on the width of tli@n be measured as [32]

waveguide as [32] 2 5
4
a(2) = o, 1+<——> (22)
qmu =) ' \/ opy dw?
WeT a0 7=123... (18) where the dispersion term can be calculated from (21) using the
following relation:
wherev = (¢ )~*/? and the cutoff wavelength, = 2a/q ) 2 )
d-j3 —(wZ Jw

measured at the velocity of light in the material between the two

. 23
metallic waveguides. The material of the waveguide, between dw? 4 [1- (wc/w)2]3/2 (23)
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Fig. 5. The two-dimensional slab dielectric waveguide used in the analygsis: 1.2, n, = n. = 1.0, andX = 1.0 pzm.
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Fig. 6. The input field used in the analysis. The field consists of a pulsed first guided mode with an initial pulse width-0 00 fs. The total time window
used was 600 fs (for clarity only 400 fs is shown), and the two vertical lines show the position of the slab waveguitle-viithm.

For a waveguide width of, = 1.0 zm, the cutoff wavelength error in percent versus the carrier wavelength at 332 ;m

A. = 2 pm and the first guided mode in the transverse dfer different initial pulse widths using the MEFD-TD and
rection = can be written asl,(x) = sin(nz/a). Numerical EFD-TD. The results of the EFD-TD are those appearing in
observations of the TD-BPM showed that the reference prg@25]. As mentioned earlier, the figure shows that the results
agation coefficientt should be chosen to be equal to thef the EFD-TD and MEFD-TD are very similar. It is to be
propagation coefficient3 of the guided mode in order thatmentioned that increasing the carrier wavelength will increase
the pulse travels with the correct velocity and hence be sthe propagation anglé = arcsin(A/A.), with respect to the
tionary in the relative time window. The group velocity wasxial direction, of the guided plane waves forming the mode
measured numerically by calculating the velocity of the pulseside the waveguide, making the mode less paraxial. On the
peak and then compared with (21). Fig. 4 shows the relatig¢ther hand, increasing the wavelength decreases the number
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Fig. 7. The percentage maximum error in the field at a distanee=6f200 xm as a function of the spatial step si2e: using the MEFD-TD withr,, = 100
fs, A7 = 2.0 fs, and\ = 1.0 pm.
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Fig. 8. The evolution of the pulsed first guided mode in the slab dielectric waveguide of Fig. 5 using the MEFD-TD. The reference refractive inklex toas ta
be the effective index of the modé.= 1 pm, Az = 0.05 pm, A7 = 2.0 fs, andAz = 0.008 zm. A moving time window was used to follow the pulse.

of carrier cycles under the temporal pulse. The figure shows Dielectric Waveguide

that as the axial angle increases, the relative error increaseg, this section. we apply the TD-BPM to simulate the prop-

due to the loss of paraxiality. The figure also shows that iggation of a temporal pulse in optical dielectric devices. Again,
creasing the initial pulse width will decrease the error. It ifhe results are validated with theoretical predictions. We have
clear that the wider the optical pulse (more carrier cycleQensidered a symmetric dielectric slab waveguide, shown in
the less the paraxial error. Fig. 5, with a carrier optical wavelength &f = 1.0 ym. The
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Fig. 9. The percentage relative error of the pulse width, at a distance of half a millimeter500 ¢m), as a function of the initial pulse widh,, for three
different slab thicknessestin pm (of Fig. 5) using MEFD-TD.
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Fig. 10. The propagation of the spatial field using MEFD-TD along the slab dielectric waveguide of Fig. 5 for different spatial PML thicKrnesgields
shown are the input and the propagated fields everymGshifted by one from each other for clear presentations. The vertical lines show the position of the slab
waveguide. (af = 0 um (zero boundary conditions), ()= 0.5 gm, ()6 = 1.0 gm, and (d) = 2.0 pum.

slab waveguide was excited with a pulsed first guided moaeror in the field, at a distance of = 200 xm, as a function
shown in Fig. 6 that has a slab width= 1 um. The tem- of the spatial step siz&x using the MEFD-TD. The conver-
poral input pulse was propagated to a distance ©f200 um, gence of the MEFD-TD with the reduction @« is clearly

and then the pulse width is compared with the theoretical valdemonstrated in the figure. On the other hand, Fig. 8 shows the
of (22). The dispersion term that appears in this equation wasgolution of the pulsed first guide mode along the slab wave-
computed numerically from the dispersion relation of a dieleguide, of Fig. 5, at different propagational distances using the
tric slab waveguide [33]. Fig. 7 shows the percentage maximitEFD-TD. As expected, the figure shows no radiation during



768 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 19, NO. 5, MAY 2001

0.6 1

0.4& T

|
0 1 2 3 4 5 6 7 8 9 10
x (micron)

0-01 L) T 1 T T T L) Ll

0.008 (b) A

0.006 b

0.004 4

0.002 4

0 1 2 3 4 5 6 7 8 9 10
x (micron)

Fig. 11. (a) Comparison between the normalized fields of Fig. 10(c) and Fig. 10(d) at steady sta?®@ pm) and the first guided mode analytical solution.
The three fields are indistinguishable. (b) A 1% portion from (a) above shows the three fields closely.
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Fig. 12. The two-dimensionaf-junction dielectric waveguide used in the analysis. The main waveguide is that appearing in Fig. 5, and the branched waveguides
are single modes with = 1.0 gm andn, = 1.2.

propagation where the mode in the transverse direction propeere used for this simulation. For the purpose of careful anal-
gates smoothly, and therefore, zero spatial boundary conditigsss, Fig. 9 shows the percentage relative error as a function of
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Fig. 13. Field plots for the simulation of thé-junction of Fig. 12 using MEFD-TD. The input is that of Fig. 5, and the simulation is for a symmétjimction
with anglesy; = a, = 2.5°. Note that the full window is not shown for clear presentation. The vertical lines on the plots show the analytically predicted positions
of the slab waveguides. A moving window was used to follow the pulse= 0.05 gm, At = 2.0 fs, andAz = 0.008 pm.

the initial pulse widths,,, for three different waveguide widths and the computational space. The PML medium is terminated by

d using the MEFD-TD. The waveguides were excited with the& simple perfectly conducting wall [29]. The maximum conduc-

respected pulsed first guided modes. It has to be noticed thaity ¢,,., can be found by requiring the reflection coefficient

changing the width of the waveguide changes the angle of tfg the plane wave incident on the interface perpendicular to

guided mode. The three slab widths were 0.5, 1.0, angdith0 (PML region)

corresponding to mode angles of 23.76.1°, and 5.3, respec-

tively. It is clear from Fig. 9 that the error associated with the

initial pulse width is much more pronounced than that associ- 2 I,

ated with the mode angle. It is to be remembered again that as R(0) = exp {_ﬁ\/gamxé} (25)

the pulse widths,, increases, the number of cycles under the i

temporal pulse also increases. The results that appear in Figo %e smaller than a given value [30]. To examine the perfor-

are similar to those appearing in [25], which uses the EFD-Tkhance of the above technique, a pulsed spatial Gaussian optical

We may conclude that the technique can easily handle pulgegém was excited inside the slab dielectric waveguide of Fig. 5

as short as 100 fs for half a millimeter distance with a r6|ati\(ﬁith a slab width ofd = 1.0 xm and a carrier wavelength of

error of less than 3%; the error decreases by increasing the iQi— 1 g pm. The initial Gaussian waist was, = 0.2 uzm

tial pulse w_idth. The efficiency of the MEFD-TD i; quite re-gnd a temporal pulse width of,, = 100 fs. Fig. 10 shows the

markable with a speed around 0.12 s per propagationalsiep propagation of the spatial field using the MEFD-TD along the

for the simulation of Fig. 8. This is measured on an average,, waveguide for different spatial PML thicknesdhe fields

233-MHz Pentium Il PC, which means that the whole simulay, i are the transverse spatial fields at the peak of the pulse.

tion takes around 25 min to complete. In the figure, the fields are the input and the propagated fields

every 10.m shifted by one from each other for clear presen-

) . ) tations. The maximum conductivity used in all cases was equal
The PML equation given in (13) was used at the transver,gglax = 0.15 Q% (;um)~L. Comparison among all the results

spatial dimensions as absorbing boundary conditions. In t9gyws the superiority of the PML layer with= 2 zim, where

PML region, the following graded conductivity distribution isihe first guided mode of the structure is clearly excited. In addi-

D. Perfectly Matched Layer

considered [30]: tion, Fig. 11 shows a comparison between the normalized trans-
¢ 2 verse spatial fields at steady state£ 200 m) for the cases
Oz = Omax <5> (24) of § = 1 andé = 2 um of the PML and the first guided mode

analytical solution. The three fields in Fig. 11(a) are indistin-
whereé is the thickness of the PML layer at one side @nd guishable from each other even when 1% of the total field is
the distance measured from the interface between the PML lagatarged [Fig. 11(b)].
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Fig. 14. The simulation is for an asymmetticjunction with anglesx, = 0.0° anda, = 2.5°. Other parameters are the same as those appearing in Fig. 13.

V. APPLICATION: Y -JUNCTION detail. We have used the explicit finite-difference and the Du

In this section, the MEFD-TD has been applied to a tWo_d‘:_ort—FrankeI approaches to discretize the TD-BPM equation,

mensional dielectri’-junction waveguide, shown in Fig. 12.Where comparisons between these techniques were also given.

. : : The methods were applied to homogenous medium, metallic,
The combined waveguide supports two guided modes while 7 . . S

X . . and dielectric waveguides; and excellent accuracy results have
each of the branched waveguides is a single mode at the car- X L )
. ! . een observed. It is also shown, similar to their CW counter-
rier wavelength\ = 1 um. The pulsed first guided mode of

Fig. 6 was excited at the input of the structure and allow qart, that both techniques are simple, efficient, and suitable

- . . . . or parallel implementations, especially for 3-D devices. In
to propagate inside thE-junction. Fig. 13 shows the simula- " >~ . ' ’ o
O propag € eI 9 ddition, it was shown that MEFD-TD is more efficient than
tion of a symmetricY”-junction when the branched angles ar .
. ' FD-TD, where PML layers were used as spatial boundary
a1 = ag = 2.5°. The figure shows field plots for the propaga-

tion of the pulsed beam at several distances. Complete symmcé)r]dltlons with MEFD-TD. Then TD-BPM was successfully

rical behavior is observed along the line of symmetry, which %nplled to simulate a d|electr|Y—J.unct|o.n structure. It was
atz = 10.5 um. The lines appearing on the plots are showin oncluded that the new TD-BPM is particularly well suited to
the position of the analytically predicted positions of the wave _elszzjgze?flg:ldgi?t::r?gi E:::Zpagi;“e%rlv\?;v?gs?gntriznﬁog_
uides. Itis to be noticed that in both waveguides, the first guid o) ong 94 L
mode of the new waveguide has been excited where the pea ure work will focus on the extension of the method to include

the mode is appearing in the middle of the guide. In modeling tﬁ\ewide—angle technique that removes the paraxial limit imposed

Fncion, Pyt wite st ah a boundan w1 NS 1 ator e eemiie wi b emined
§ = 2 pm ando ., = 0.15 Q=1 (um)~!. Fig. 14 shows the P P ’ P

. . Y , optical interactions of¢(® and x(*, where the time-domain
simulation of an asymmetri -junction using the same parame- . . . .
thod is essential in order to study the propagation of intense

ters of Fig. 13 except that the branched angles are not equal Vmﬁrashort Ulses
a1 = 0 and= «ay = 2.5°. Clearly, the figure shows an asym- P '
metric propagation for the new modes inside the asymmetric
Y -junction. REFERENCES

[1] K. S. Yee, “Numerical solution of initial boundary problems involving

Maxwell’s equations in isotropic medialEEE Trans. Antennas Prop-
VI. CONCLUSION agat, vol. AP-14, pp. 302-307, 1966.

A | hni del Ised ical b h [2] R.W. Ziolkowskiand J. B. Judkins, “Full-wave vector Maxwell equation
novel technique to model pulsed optical beams has modeling of the self-focusing of ultrashort optical pulses in a nonlinear

been introduced and analyzed using linear nondispersive and Kerr medium exhibiting a finite response timel” Opt. Soc. Amer. B

dispersive examples that have analytical predictions. The Vol 10, no. 2, pp. 186-198, Feb. 1993. _ _

derivati the discretization. and the numerical analvsis of the[3] R. W. Ziolkowski, “The incorporation of microscopic material models
erivauon, ’ Yy into the FDTD approach for ultrafast optical pulse simulatiohEEE

time-domain beam propagation method have been shown in  Trans. Antennas Propagatol. 45, pp. 375-391, Mar. 1997.



MASOUDI et al: EFFICIENT TD-BPM FOR MODELING INTEGRATED OPTICAL DEVICES 771

[4]

(5]

(6]

(71

(8]

9]

(20]

(11]

(12]

(13]

(14]

[15]

[16]

(17]

(18]

[19]

(20]

[21]

(22]

(23]

(24]

[25]

[26]

R. M. Joseph and A. Taflove, “FDTD Maxwell's equations models [27] F. Xiang and G. L. Yip, “An explicit and stable finite-difference 2-D
for nonlinear electrodynamics and opticdEEE Trans. Antennas vector beam propagation methodEEE Photon. Technol. Lettvol. 6,
Propagat, vol. 45, pp. 364-374, Mar. 1997. pp. 1248-1250, 1994.

A. Taflove, “Review of the formulation and application of the finite-dif- [28] H. M. Masoudi and J. M. Arnold, “Spurious modes in the Du
ference time-domain method for numerical modeling of electromagnetic Fort—Frankel finite-difference beam propagation methodEEE

wave infractions with arbitrary structuresfVave Motion vol. 10, pp. Photon. Technol. Lettvol. 9, pp. 1382-1384, Oct. 1997.

547-582, 1988. [29] C. M. Rappaport, “Perfectly matched absorbing boundary conditions
S. Chu and K. Chaudhuri, “A finite-difference time-domain method for based on anisotropic mapping of spad&EE Microwave Guided Wave
the design and analysis of guided-wave optical structudesightwave Lett, vol. 5, pp. 90-92, Mar. 1995.

Technol, vol. 7, pp. 2033—2038, 1989. [30] W. P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, “The perfectly
W. P. Haung, S. Chu, A. Goss, and K. Chaudhuri, “A scalar finite-dif- matched layer (PML) boundary condition for the beam propagation
ference time-domain approach to guided-wave optitSEE Photon. method,”IEEE Photon. Technol. Lettvol. 8, pp. 649-651, May 1996.
Technol. Lett.vol. 3, pp. 524-526, 1991. [31] R.W. Ziolkowski and J. B. Judkins, “Propagation characteristics of ul-
H. A. Jamid and S. J. Al-Bader, “Finite-difference time-domain ap- trawide-bandwidth pulsed gaussian beands@pt. Soc. Amer. Aol. 9,
proach to nonlinear guided wavegtectron. Lett. vol. 29, pp. 83-84, no. 11, pp. 2021-2030, Nov. 1992.

1993. [32] S. Ramo, J. Whinnery, and T. V. Duzéields and Waves in Communi-
R. Y. Chan and J. M. Liu, “Time-domain wave propagation in optical cation Electronics New York: Wiley, 1984.

structure,”|EEE Photon. Technol. Lettvol. 6, pp. 1001-1003, Aug. [33] D.L.Lee,Electromagnetic Principles of Integrated OpticsNew York:
1994. Wiley, 1986.

P. Liu, Q. Zhao, and F. Choa, “Slow-wave finite-difference beam propa-[34] K. L. Shalager, J. G. Maloney, S. L. Ray, and A. F. Peterson, “Rela-
gation method,IEEE Photon. Technol. Lettvol. 7, pp. 890-892, Aug. tive accuracy of several finite-difference time-domain methods in two
1995. and three dimensionsJEEE Trans. Antennas Propagatiol. 41, pp.

G. H. Jin, J. Harari, J. P. Vilcot, and D. Decoster, “An improved time- 1732-1737, Dec. 1993.

domain beam propagation method for integrated optics components,”

IEEE Photon. Technol. Leftvol. 9, pp. 348-350, Mar. 1997.

J. Zhenle, F. Junmei, and F. Enxin, “An explicit and stable time-domain

method for simulation wave propagation in optical structurddicr.  Husain M. Masoudi received the B.S. and M.S. degrees from the Electrical
Opt. Technol. Lettvol. 14, no. 4, pp. 249-252, March 1997. Engineering Department of King Fahd University of Petroleum and Minerals
F. Ma, “Slowly varying envelope simulation of optical waves in timeg(KFUPM) at Dhahran, Saudi Arabia, in 1986 and 1989, respectively. He also
domain with transparent and absorbing boundary conditighd,ight-  received the Ph.D. degree in opto-electronics from the Electronics and Electrical
wave. Technalvol. 15, pp. 1974-1985, Oct. 1997. Engineering Department in the University of Glasgow, U.K., in 1995.

L. Gomelsky and J. M. Liu, “Extension of beam propagation method to From 1989 to 1991, he taught undergraduate courses of electromagnetic
time dependent optical waveformsEEE Photon. Technol. Lettvol.  theory, electronics, and circuit analysis in the same department as a Lecturer.

6, pp. 546-548, Apr. 1994. In 1995, he was appointed as an Assistant Professor in the Department of
M. D. Feit and J. A. Fleck, “Light propagation in graded-index opticaElectrical Engineering at KFUPM. In 1998, he was also assigned to be a
fibers,” Appl. Opt, vol. 17, pp. 3990-3998, 1978. Manager of Laser Research Section, Center for Applied Physical Sciences,

D. Yevick, “A guide to electric field propagation techniques forResearch Institute at KFUPM. In addition, he is also the Coordinator of Optical
guided-wave optics,'Opt. Quantum Electronvol. 26, pp. 185-197, Device Simulation Group (ODSG) http://www.kfupm.edu.sa/odsg/ Electrical
1994. Engineering Department of KFUPM, Saudi Arabia. His current research
H. J. W. M. Hoekstra, “On beam propagation methods for modeling iimterest is modeling linear and non-linear optical devices; this includes both
integrated optics,Opt. Quantum Electronvol. 29, pp. 157-171, 1997. continuous wave (CW) interactions and pulsed optical beams.

Y. Chung and N. Dagli, “Explicit finite difference beam propagation

method: Application to semiconductor rib waveguldgunction anal-

ysis,” Electron. Lett, vol. 26, pp. 711-713, 1990.

——, “Analysis of Z-invariant and Z-variant semiconductor rib Muhammad A. Al-Sunaidi received the B.S. and M.S. degrees in electrical
waveguides by explicit finite difference beam propagation method witkngineering from King Fahd University of Petroleum and Minerals (KFUPM),
nonuniform mesh configuration)EEE J. Quantum Electronvol. 27, Dhahran, Saudi Arabia, in 1984 and 1987, respectively, and the Ph.D. degree in
pp. 2296-2305, 1991. electrical engineering from Arizona State University, Tempe, AZ, in 1995.

H. M. Masoudi and J. M. Arnold, “Parallel beam propagation methods,” Between 1987 and 1991, he was a Lecturer in the Electrical Engineering De-
IEEE Photon. Technol. Leftvol. 6, pp. 848-850, 1994. partment, KFUPM, where he taught courses in electronics, digital design and
——, “Parallel three-dimensional finite-difference beam propagatioelectromagnetics. In 1991, he joined the Ph.D. program at Arizona State Uni-
methods,"Int. J. Numer. Mod.vol. 8, pp. 95-107, 1995. versity, where he was a Research Assistant in the Solid State Research Center
——, “Parallel beam propagation method for the analysis of second hamnd the Telecommunication Research Center between 1991 and 1993 and be-
monic generation,IEEE Photon. Technol. Lettvol. 7, pp. 400-402, tween 1993 and 1995, respectively. Since May 1995, he has been with KFUPM,
Apr. 1995. where he is now an Assistant Professor in the Department of Electrical Engi-
——, “Modeling second-order nonlinear effects in optical waveguideseering. His research activities include modeling and simulation of high-fre-
using a parallel-processing beam propagation methdHBEE J. quency active devices, optically controlled active devices, computational elec-
Quantum Electron.vol. 31, pp. 2107-2113, Dec. 1995. tromagnetics, and nonlinear integrated optics.

H. M. Masoudi, “Parallel numerical methods for analyzing optical de- Dr. Alsunaidi received a number of international research fellowships in-
vices with the BPM,” Ph.D. dissertation, Faculty of Engineering, Univcluding the British Council Research Award at the University of Glasgow in
of Glasgow, 1995. 1998 and the Matsumae International Foundation Award at Tokai University,
H. M. Masoudi, M. A. AlSunaidi, and J. M. Arnold, “Time-domain fi- Japan, in 2000.

nite-difference beam propagation methd&EE Photon. Technol. Lett.

vol. 11, pp. 1274-1276, Oct. 1999.

E. C. Du Fort and S. P. Frankel, “Stability conditions in the numer-

ical treatment of parabolic differential equation®|”T.A.C, vol. 7, pp.  John M. Arnold, photograph and biography not available at the time of publi-
135-153, 1953. cation.



