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Modeling Second-Order Nonlinear Effects
in Optical Waveguides Using a Parallel-Processing
Beam Propagation Method

Husain M. Masoudi and John M. Arnold

Abstract—1In this work, we present a simple efficient numer-
ical solution for the three-dimensional coupled wave equations
containing a second-order nonlinearity, using an explicit finite-
difference beam propagation method (EFD-BPM). The linear
EFD-BPM is known to be very efficient and to gain large
speed up when implemented on parallel computers. The new
nonlinear version of the EFD-BPM has the same features of the
linear counterpart in using two separate computational windows,
one for the fundamental field and the other for the second-
harmonic field. We demonstrate the implementation and discuss
the application of this method to a nonlinear rib waveguide using
the quasi-phase-matching technique.

I. INTRODUCTION

ECENT experimental advances in the nonlinear effects
of optical waveguides show that there is a need to
model such devices accurately and efficiently ([1]-[4], and
references therein). Waveguides that contain second-order non-
linear susceptibility (and nonlinear effects in general) are very
difficult to model using analytically based techniques like
coupled mode theory, and even more difficult when the devices
contain multiple waveguides in which they have geometrical
and/or material change in all three directions. Other methods,
based on numerical analysis, are much better suited to such
devices. The beam propagation method (BPM) is a well-
known numerical method used, in different forms, to study
many optical waveguides (a recent review of the BPM can be
found in [5]). The method is attractive because it is suitable
to study a wide range of different waveguides in addition
to its simplicity and flexibility as a general propagational
technique. For second-harmonic optical devices, the BPM has
been used to simulate two-dimensional (2-D) [6], (7] and three-
dimensional (3-D) [8] (fibers, with the assumption that the
source field is undepleted) devices in both FFT and finite-
difference (FD) forms.
In earlier work [9], [10], we have shown that implemen-
tations of the explicit FD method (EFD-BPM) and the real
space method (RS-BPM) on parallel machines will speed up
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their execution times tremendously because of their nature
as explicit methods which reduces communication between
the parallel processors. On the other hand, other BPM meth-
ods do not possess this feature and consequently are not
highly parallel and will not gain as much in speed up in
the parallel environment [9], [10], [13]. Also it has been
demonstrated that the parallel EFD-BPM is several times
faster, per propagational step, than the parallel RS-BPM [9],
[101, [13].

In this paper, we apply the parallel EFD-BPM to study 3-
D waveguides in the presence of a second-order nonlinearity
x® where the source field is allowed to deplete. We will
refer to this method as the parallel second-harmonic generation
EFD-BPM (or in short SHG-EFD-BPM). Early results of
this method have been reported in a short communication
[12], while in this paper, we show the full analysis with-
out concentrating on the issue of parallel implementation.
In Sections I and III, we discuss the derivation and the
implementation of the numerical nonlinear coupled wave
equations both in 3-D (SHG-EFD-BPM) and in 1-D, which
is commonly used in the literature to validate experimental
results and to study possible concepts for optical devices [1],
[31, [4]. Then, in Section IV, we analyze, using the parallel
SHG-EFD-BPM, a semiconductor rib waveguide containing a
second-order nonlinearity with quasi-phase matching (QPM)
[14], {15] to model the relative phase between the fundamental
and the second-harmonic fields. Also in the same section,
we compare and discuss the parallel SHG-EFD-BPM results
with the solution of the reduced 1-D coupled wave equations
[16].

[I. NUMERICAL METHODS

The wave equation for the propagation of an electric field
F of a given polarization in a material with a refractive index
n can be written as

a’pP

TR M

&?E
V’E = uomnz—a—tz— + to€o
where V? is the Laplacian operator, the speed of light in
vacuum is ¢ = 1/,/fp€p and P is the nonlinear polarization
in the material that can be approximated, for CW operation,

as P = Y@ EE with x® being the second-order nonlinear
susceptibility of the material.
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Let us now consider the propagation of two fields at two
different frequencies, one at w (the fundamental field) and the
other at 2w (the second-harmonic field), while extracting a
common reference phase in the direction of propagation z.
Then the fields can be written as

1 :
E¥(z,y, 2z, t) = 5[@“‘ (z,y, 2)e?@tkene?) L cc]  (2a)

E*(z,y, 2, 1) = %[Cbz“’(m, y, z)e2(@t—kono2) Lc ] (2b)
where 7, is a reference refractive index, k&, is the free-space
wave at the fundamental frequency defined as &, = i“
and c.c. is the complex conjugate. Inserting (2) in (1), and
neglecting terms contammg second derivatives with respect to
z, we arrive at the coupled parabolic wave equations in three
dimensions for both the fundamental and the second-harmonic
waves
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where ¢/ and ¢° are the parabolic fields of the fundamental
" and the second-harmonic respectively, which are paraxial
approximations to the ®’s (the Helmholtz fields) in (2). Here,
we assume that the fields are linearly polarized and that the
vector nature of the fields can be ignored. This is a good first
approximation for' paraxial problems of the type considered
here for which the BPM is appropriate. Throughout this
paper, subscripts or superscripts for both f and s are related
to the fundamental wave and the second-harmonic wave,
respectively. In the derivation of (3), we have assumed that
the second-order nonlinearity is homogeneous and is defined
through ¥® = x@ (2w; w, w) = x®(w; 2w, —w)/2 [11, (3]
and the source field is allowed to deplete during propagation.
We use central finite-difference approximations for the partial
derivatives acting on a field £ in (3)

P
OF(z) __

& F(p) _ Flp+0p)=2F(p)+F(p—Ap) _
Hp2 Ap? ) (,0 = y)} (4)
8z
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F(z+Az)~F(2—Az)
208z

where Ap and Az are the transverse mesh size and the step-
ping of the field in the direction of propagation z respectively.
Then (3) can be discretized with second-order accuracy with
respect to z as [9]-[13]

Ol + B82) = 6L,.(5 = A2) + delpf 1 n(2) + 6Ly (2)]
+d [¢ m+l(z) + ¢@fm 1(Z>]
+ bf¢7.',m (Z) + arrlsi,m (Z)¢z,m (Z) (53)
dy
sm(z + AZ) = ¢f,m(z - AZ) + _2’[ f—.Ll,m(Z) + ¢';?—1,m(z>]
' d
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where ¢ and m represent the discretization of the transverse
coordinates z and . ‘

Let us also write the usual approximate 1-D coupled wave
equations for the nonlinear wave equation; later in this work,
we use the solution of the 1-D equations to compare with
the results of the SHG-EFD-BPM. The derivation of the
1-D approximation is the same as our 3-D approach without
z and y variations. If we project the fields onto the 3-D eigen
functions (the mode dlstnbutlons) and write the 3-D fields in
(3) as

¢f _ Efef
Wk ©)
s BWS (0
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where
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the E’s are dependent only on 2z, U’s are the 3-D z-
independent linear mode fields and A4 is the cross-sectional
area. Inserting (6) in (3), the 1-D nonlinear coupled wave
equations can be written as [1], [3]

52:[ (T*)2 dA
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where the wave vector mismatch is Ak’ = 2k, (nsf — n;ﬁ)
(note that the extracted reference phase is not common for
both fields). From the power relation (P = 22~ A.g, Z, is the
free space impedance) we can also express the effective area
of the 3-D fields as o

28,

Aeg = 53 ®

For perfect phase matching (AL’ = 0), (7) leads to the
well-known solution for the normalized intensities of the
fundamental and the second harmonic as

" = sech?(T'z) }

= = tanh*(T'z) ©)

;mw
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(a)

®)

Fig. 1. (a) The rib waveguide used in the computations. (b) The rectangular
periodic grating of the nonlinear medium.

where
T= koX@)IE«ﬂ

2,/ n‘}ﬁngﬂ

and I, and E/ are the initial intensity and field respectively
of the fundamental at z = 0. For the nonphased-matched case
(6) can be solved using Jacobian elliptic functions [3], [15]
or numerically using the Runge-Kutta method [16]. We have
used the fourth-order Runge-Kutta method to solve the 1-D
coupled wave equation in (7) [16].

III. IMPLEMENTATIONS

We have implemented the SHG-EFD-BPM in (5) using
two different parallel machines, a transputer array (MIMD
machine) and a connection machine (SIMD machine). These
implementations are similar to the linear ones in [9], [10] and
also are described in [12], [13]. Two separate computational
windows, one for the fundamental field and the other for the
second-harmonic field, have been used while allowing them to
share common data for the calculations of the coupled terms.
It has been observed from testing the SHG-EFD-BPM that
the method is stable for propagation steps Az very close to
the limiting values of the linear EFD-BPM in [9]-[11]. The
reason for this is that the nonlinear term in (3) has very little
effect on the stability of the method due to the small value of
x®, which is in the order of 10~'2 m/V for practical devices
[11, [31, [4]. As expected, the speeds of the parallel SHG-
EFD-BPM implementations are more than twice as slow as
the corresponding linear parallel EFD-BPM [12].

IV. RESULTS AND DISCUSSIONS

Throughout this paper, we have used the rib waveguide in
Fig. 1(a) to study a nonlinear semiconductor device with the
following parameters (all dimensions are in pm) [3], [12]:
Nsub = 3.4, Ay = 155, Ay = 0.775, ngy = 3.5, ngs =
3.6, x» = 300 pm/V. The design of this structure shows
that it is strongly guiding at both frequencies although it is
a single-mode waveguide at the fundamental frequency and
a multimode waveguide at the second-harmonic frequency.
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Fig. 2. The normalized field distribution of the first guided mode of the
fundamental waveguide that has been used as an input for the analysis.

Using equal lengths of 8 pm for the z and y window sizes and
Azr = Ay = 0.1, the computed first guided mode effective
indices of both fields, using Az = 0.025 and n, = nsub,
are n§® = 3.45299169 and ng = 3.58591145. The power
spectral method in [17], [18] has been used to compute the
linear mode effective indices and the field distributions of the
structure from the BPM fields. Fig. 2 shows the normalized
field distribution of the first guided mode of the fundamental
waveguide. The computed effective area, using (8), of the 3-
D fields is 1.92 ym?. The parameters of this structure show
that it is a nonphase matched waveguide in which quasi-phase
matching (QPM) techniques could be used to alter the relative
phase difference between the two fields [14], [15]. QPM is
used for efficient optical SHG and other nonlinear optical
processes [3], [14]. In practical terms, QPM is achieved by
introducing structural periodic gratings, in the direction of
propagation, of the nonlinear medium. The BPM mismatch
wave vector, for QPM, is defined as Ak = B2 — Zﬂ‘}’ - %\’5,
where ,GJ’Z and F? are the parabolic wave numbers of the
fundamental and the second-harmonic fields respectively, and
A is the grating period. The computed grating length, for Ak =
0 (between the first guided modes of both frequencies), of
this waveguide is equal to 5.63269267 pm. In our simulation
we have used a grating in which the second-order nonlinear
coefficient yx(® has either its full value or is zero in alternate
half-periods of the grating [see Fig. 1(b)]. This geometry might
be realized in a semiconductor asymmetric quantum well
by selective-area disordering, which periodically annihilates
the x® coefficient produced by the quantum well breaking
the symmetry of the bulk martial [19]. It is known that
QPM reduces the effectiveness of the second-order nonlinear
coefficient x? by a factor 2/x in the case of domain reversal
and by a factor of 1/7 in the case of domain disordering
(where x(® is periodically reduced to zero) [14], [15]. In
the following computations, the first guided mode of the
fundamental frequency (Fig. 2) has been launched as an input
to the waveguide, and zero initial field is assumed for the
second harmonic. .

Fig. 3 shows the normalized intensities for both the funda-
mental and the second-harmonic modes along the propagation
direction z for a grating length A =5.64 pym (AKL =
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Fig. 3. (a) The normalized intensity for both of the fundamental and the
second-harmonic fields versus the longitudinal distance z(pm), using the
parallel SHG-EFD-BPM with an input power = 125.6 W and a grating length

A = 5.64 pm. (b) A portion from the top figure enlarged to show the ripple
caused by the QPM.

1.445252). The computation of the normalized intensities of
the modes has been carried out numerically by evaluating the
square of the magnitude of the projected total BPM field onto
the normalized mode and then normalizing with respect to the
input intensity, which can be expressed as

2
Fs b5 (5
T (2) = // T ,
J] e aaff wroas
A A

where f, s means the fundamental or the second harmonic.
On the other hand, Fig. 4 shows the total normalized fields
in the fundamental and second-harmonic windows at different
propagational distances using the parameters of Fig. 3. From
these two figures, the power exchange mechanism between
the two modes is clearly shown, where the effect of the QPM
has been demonstrated. through the coupling and the ripple of
the intensities shown in Fig. 3(b) with the grating periodicity.
Fig. 4 shows that some power has coupled into radiation in the
second-harmonic window. The computed radiation power is
very small compared with the power carried by the first guided
modes in both windows. Also it has been observed that there
is very little coupling to the third-order mode of the second-
barmonic where this can be explained from the overlap integral

(10)
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between the first-order mode at the fundamental frequency and
the modes at the second-harmenic frequency, which is zero
for the second-order mode and very small for the third-order
mode [8] [see also S, below (6)]. In addition, the grating
length used, in this simulation, results in nonphase-matching
for these modes. )

In the following case, we compute, using the parallel SHG-
EFD-BPM, the output depletion and the nonlinear phase -
change of the fundamental field after a distance of L = 1 mm
for different grating lengths along the direction of propagation.
By varying the grating length, the relative wave vector Ak -
changes while exciting predominately the first guided mode of
the second-harmonic frequency. It has been assumed that the
phase of the fundamental field is changing as e /¢ Fetone)
where @7 is the nonlinear phase shift of the fundamental ‘
field. In order to check the results of the parallel SHG-EFD-
BPM, we have also run the approximate 1-D coupled wave
equations [of (7)] using the fourth-order Runge—Kutta with
the same parameters. There are two methods to simulate QPM
technique using the solution of (7). The first method is to
use exactly the same procedure of the 3-D BPM with actual
structural periodic gratings for the second-order nonlinear
coefficient x( along the z direction and the second method
is to reduce the value of x by the QPM factor 1 /T or
2/m (without structural grating), while changing explicitly
Ak o AK = 2k, (ngT — nsF) — ZE, in (7), to simulate
the existence of second-order nonlinear gratings [1], [4]. We
have tested both of these methods numerically using the
fourth-order Runge-Kutta and we found excellent agreement
between the two results. In the following simulation, we will
use the second method to compare with the SHG-EFD-BPM
results. Fig. 5 shows the depletion intensity and the nonlinear
phase shift f; of the fundamental as functions of AkL for
both the parallel SHG-EFD-BPM and the approximate 1-D
Runge—Kutta (Ak’'L = AkL) for different input powers. The
figure shows close agreement between the two results. Also
from the figure, we can see that the nonlinear phase shift can
be positive or negative, depending on the grating period, and
this phase shift is increasing when the input power is increased.
This effect has been studied theoretically [3], {4], and has been
observed experimentally in KTP [1]. In addition, Fig. 6 shows
the dependence of the depletion and the nonlinear phase shift
O of the fundamental on the input power using the parallel
SHG-EFD-BPM and the approximate 1-D Runge-Kutta for -
several values of AkL (Ak'L = AkL). From this figure, we
notice that the two methods agree very closely at low power
with some little deviation at high power. The propagation step
size Az used in these computations was 0.01 pm, although
the SHG-EFD-BPM algorithm is stable for Az = 0.025 pm,
but in order to model the exact grating lengths mentioned
before using a common step size, Az had to be reduced.
The total execution time for each run of the parallel SHG-
EFD-BPM is around 10.3 min. on the connection machine
(CM-200) using 16-k processors and around 76.3 min. using
64 processors of the transputer array [12], [13]. Since the
transputer implementation runs at around 54.2% efficiency
[101, [13], the serial execution time on one processor would
be 2646.7 min., or 1.84 days.
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V. CONCLUSION

A numerical method to model three-dimensional optical
waveguides containing a second-order nonlinearity has been
presented. The new nonlinear method, which is an extension
to the linear parallel EFD-BPM, is also highly parallel. We
have implemented the method to model a semiconductor rib
waveguide in the presence of the second-order nonlinearity
x® where the source field is allowed to deplete, using two
different supercomputers. The quasi-phase matching (QPM)
technique has been realistically incorporated in the analysis of
the waveguide in order to change the relative phase mismatch
between the two fields. We have also implemented the approxi-
mate 1-D nonlinear coupled wave equations numerically using
the Runge—Kutta method to validate some of the results of the
nonlinear EFD-BPM. Excellent agreement between the two
methods has been observed. Finally, it has been concluded that
the new parallel algorithm is simple, efficient and very useful
for modeling large complicated nonlinear optical devices.
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