1t

13

14

i)

7

Ix

19

40

41

49

51

52

INTERNATIONAL JOURNAL OF NUMERICAL MODELLING : ELECTRONIC NETWORKS. DEVICES AND FIELDS.
Vol. 0. 000-000 (1995)
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SUMMARY

In this work. we show the implementation of two explicit three-dimensional finite-difference beam propagation
methods (BPM) on two different parallel computers, namelyv a transputer array and a Connection Machine
(CM). To assess the performance of using parallel computers, serial computer codes of the two methods
have been implcmented and a comparison between the speed of the serial and parallel codes has been made.
Large gains in the speed of the parallel FD-BPMs have been obtained compared to the serial implementations.
In addition, a comparison between the performance of the transputer array and the CM in executing the
two FD-BPMs has been discussed. Finally, to assess and compare the two methods. three different nb

waveguides and three different directional couplers have been analysed and the results compared with
published results.

1. INTRODUCTION

Most large numerical algorithms for the analysis of optoelectronic devices consume a lot of time
to produce one set of data in solving a single problem; however, most of the computations
involved may contain parts that could be computed independently. By breaking the problem into
small pieces and arranging for each piece to be solved simultaneously, using parallel computers,
the computation of the problem could be solved in a smaller amount of time. The beam propagation
method (BPM), which is a standard method used to model optical devices, is one of the algorithms
that can run efficiently on parallel computers.

The classical BPM has been widely used to analyse optical waveguide structures.'™ The BPM
is attractive to the designer of optical devices because it overcomes the difficulties of mode theory
when applied to complicated structures, and because of its flexibility as a propagational technique.
It is essentially an approximate numerical method which solves the scalar wave equation in its
approximate parabolic form. The original method consisted of marching the input optical field
over small distances in dielectric media with the use of the fast Fourier transform (thus called
FFT-BPM).! The role of the FFT is to provide a transformation between the spectral domain
and the spatial domain. For each propagational step, the optical field is simulated by a spectrum
of plane waves in the spectral domain and a phase correction due to the medium inhomogeneity
is introduced in the spatial domain. The FFT-BPM has limitations that restrict its application.
For instance, in addition to the poor efficiency of the FFT-BPM, a large variation in the transverse
refractive index profile of the semiconductor waveguides will force the method to use extremely
small propagational steps. Above all, the restriction imposed by the FFT makes the method
incapable of using non-uniform grid spacing and radiation boundary conditions.

An alternative numerical technique to solve the parabolic equation in the spatial domain 1s to
use a finite-difference approximation to replace the partial derivatives in the equation (thus called
FD-BPM). Recently, this approach has received wide attention from many workers.?~’ Lately,
the vectorial finite-difference beam propagation method has been reported.® All FD-BPM tech-
niques have shown that this approach is much more efficient than the FFT-BPM in terms of
accuracy, speed and storage required. In addition, some of these techniques have succeeded in
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overcoming the main limitation of low-contrast media in the FFT-BPM. and allow propagation
in strongly guiding structures.

The FD-BPM is very efficient when applied to the analvsis of 2-D structures. because the
computation nvolves only one-dimensional numerical arravs. On the other hand the FD-BPM is
time-consuming when used to analvse three-dimensional devices accuratelv. tor several reasons.
First, the 3-D nature of the rectangular waveguides leads to a large computational problem-
second. some practical devices contain multiple coupled linear and non-linear waveguides: and
third. the existence of large-contrast media will force the BPM to use small transverse mesh sizes
and small longitudinal step sizes for convergence or stability reasons. Obviouslyv, this will multiply
the computational effort many times over. The computational resources used (conventional serial
computers) are not adequate for this kind of problem. The best wav to solve large problems
quickly 1s to use parallel computers.’~!” Already, substantial improvements in the speed of parallel
over sertal computation have been achieved for a number of major mathematical applications.
In this work we show that the implementation of two finite-difference BPMs on a transputer
array and a Connection Machine (CM) speed up the execution of these algorithms tremendously.
Owing to the fact that parallel computers can execute large problems rapidly, the parallel FD-
BPM allows optical devices to be modelled accurately, by increasing the number of mesh points.
and gives the freedom to study complicated devices that contain multiple waveguides. The next
section shows the formulation of three finite-difference BPMs in three dimensions. in which two
of them are highly parallel. Then Section 3 shows the implementation of these two methods on
parallel computers where full comparisons between the performance of these parallel methods
have been made. Section 4 contains the accuracy assessment of the two parallel BPMs where
three different rib waveguides and three different directional couplers have been analysed and
the results are compared with other techniques.

2. THEORY

We begin with the parabolic wave equation in three dimensions for a scalar monochromatic
electric field, E, which can be written as

2kny =+ 4 KA~ ) E (1)

where & 1s the free space wave number, n, is a reference refractive index and n{x,v,z) is the
refractive index profile. x and y are the transverse directions and z is the propagational direction.
Generally the FD-BPM has two methods of expressing the operator tormulation based on equation

(1), the implicit approach and the explicit approach.'~’ Implicit methods use the following equation
to march the field from z to z + Az

A Az A A
E(x,y.z + Az) = exp(—- [ ,)j V%) exp(—-J — Vf) exp(-— [ — d) exp( : V%)

7 o a 124
exp(— j éjV_%) E(x,y.2) + O((Az)%) (2)
where
a=2kn,
d(x,y.z) = k*[n*(x.y.z) — n}
Vﬁ:j;j& (p=2x.y)

Az 1s a small step in the propagation direction. Replacing the operators which contain the Laplacian
with the relation
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| CAz o-
P
2 ta dp-
exp(— ] \';) == - r_:?_____p%__: + O((Az)7) (3)
2a " | CAD o
‘*;‘J Ty
I da dp-

gives rise to the most popular BPM, which is based on the alternating direction implicit approxi-
mation (ADI-BPM). The ADI-BPM is unconditionally stable. but requires the solution of a large
block tridiagonal system of equations for each propagational step.® On the other hand, the explicit
approach has mainly two ways of formulating the problem. The first is the real space method
(RS-BPM), which uses the finite-difference matrix splitting operators 10 approximate equation
(1), and can be written as>’®

Az
lixn(z+ﬁk2)==GXP(awSS)eXP(BySf)eXP(aySﬁ)GXP(awSE)eXP(BISi)eXP(awSﬁ)eXP(~*J“;lf)

exp(a,S2) exp(B,Ss) exp(a,S) exp(a.S?) exp(B.S5) explaSy) (4)
Ef*m(z) + O((AZ)F;)

where
2 2
Ulx,yz) = d(x.y.2) = 35~ Ky
. Az
BF’ o J za Ap2 - 2(1[)

Ax and Ay are the mesh sizes in the x- and the y-directions respectively. The symbols i and m
represent the sampled values of both the field and the refractive index profile in the x- and y-
direction respectively. The matrix splitting in equation (4) is chosen such that each matrix
S and S¢ is block-diagonal, where each block contains a small submatrix (e.g. 2 by 2) which may
be exponentiated analytically. This method 1s unconditionally stable but, similar to the FFT-BPM,
requires small propagational steps to converge when applied to large constrast media. However,
it proves to be much more efficient per propagational step than the ADI-BPM because it does
not involve the solution of a system of equations, but instead multiplication of independent small
matrices. Full details of the RS method can be found in Reference 8. The second approach 1s
truly explicit and therefore called the explicit finite difference method (EFD-BPM), and is based
on applying the central finite-difference approximation directly to the parabolic equation; it can
be formulated. in a discretized fashion, as

Ei.m(z + AZ) = Ef.m(z - AZ) + 4Bx[Ei*l*m(Z) T Er’+ l,m(z)]

24z
+ 4‘3}*[Ei,m~1(z) + E:’,m+1(z)] _ J _-;_ Uf.mEi,m(z) (5)

The propagation of the optical field in equation (5) 1s straightforward since it involves multiplication
of the input field with a very sparse matrix, which makes the method very efficient. However,
this algorithm is only stable under the condition®

-

-

4 4 -1
Az < 2kn0 —_— — + kz‘n:'zm - n% max
Ax? Ay’ *

-

Comparison between all of the FD-BPMs described above shows that both the RS-BPM and
the EFD-BPM are highly parallel due to the locality of the spatial points, which reduces the
movement of data between processors.” !° In contrast, the ADI-BPM will not gain as much 1n
speed when implemented in parallel because of the required inversion of large matrices for each
propagational step; in other words, to perform the propagation on any given spatial point,
information is required from all parts of the transverse space. Although the propagational step

JNM: international journal of numerncal modeiling inm$$$184p 170195 10:54:23



16

ix

19

|

4 H. M. MASOUDI! AND J. M. ARNOLD

of the ADI-BPM is considerably larger than that of the explicit methods. the explicit methods
are more etficient than the implicit method in two ways: first. thev are much more efficient per
propagational step in normal serial form: and second. thev gain a larger speed-up when run on
parallel computers. These two reasons more than compensate for the constraints imposed on both
methods. This 1s why we have not fully implemented the ADI-BPM on parallel machines.

3. PARALLEL IMPLEMENTATIONS

In this section we show how to implement both of the explicit methods, the EFD-BPM and the
RS-BPM, on a transputer array and a connection machine. The transputer array 1s a Parsytec
super-cluster consisting of 64 IMS-T800 processors (MIMD machine) each with 4 megabytes. The
Connection Machine is a CM-200 consisting of 16 kbit (16,384-bit) serial processors (SIMD
machine) with a total of 0-5 gigabytes. The front-end computer to both of these machines is a
SUN (SPARC Station 2).

3.1. The transputer array

In order to implement the explicit methods on a transputer cluster, a topology tor connecting
the processors has to be carefully selected to ensure that maximum etficiency is gained from
parallelizing these methods. We have used the 2-D grid topology shown in Figure 1 for the
implementation of both the EFD-BPM and the RS-BPM on the transputer array. We believe
that this topology is the best arrangement to parallelize these algorithms 1n terms of efficiency
and transputer memory distribution. Excluding the processors at the borders of the topology
shown, each processor has four links connected to its neighbours, where each link is a bidirectional
communication channel for exchanging information. We have implemented both the EFD-BPM
and the RS-BPM on the 2-D grid topology, by dividing the total 2-D transverse mesh into 2-D
identical blocks of mesh points where the size of each block is equal to

(e o
dim(x) ’ dim(y)

M. and M, are the number of mesh points in the transverse direction x and y respectively and
dim(x) and dim(y) are the number of processors in the x- and y-direction, respectively, of the
2-D grid topology. Each block is assigned to one processor for computation. The arrangement
of the 2-D topology in Figure 1 will ensure that all processors carry out equal amounts of
computation, without the need to load-balance the transputer system. In addition, it gives the
tfreedom to change both the number of processors and the number of mesh points without altering

4 ( ) dim(x),
1.di vy .
| (Lam) dim(y))

Figure 1. The 2-D grid topclogy used for the implementation of both the EFD-BPM and the RS-BPM. The number
shown indicates the position of each processor in terms ~f the 2-D grid
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the parallel computer code. For every propagational step the processors exchange only the local
mesh points at the border of each computational block. We have implemented both of the explicit
methods on a single processor (serial computation) of the transputer in addition to the parallel
implementations, in order to study the gain in efficiency by using the transputer arrav. All
computer codes were written in FORTRAN with a double-precision accuracy under PARIX
operating environment software.!!

3.2. The Connection Machine

The implementation of the two explicit methods on the CM is totally different from those on
the transputer array. Unlike the transputer array, where the links between processors are chosen
explicitly by the user, the CM achieves the parallel mechanism globally rather than locally. The
CM computer code resides in the central control unit (the front-end computer) and the data, to
be computed in parallel, are distributed to the private memory of each processor of the CM.
Then the central control unit of the machine broadcasts a system of identical serial instructions
to all processors, where these instructions are executed simultaneously by all processors on all
local data of each processor (see Figure 2).1%1? In the case that the data array is larger than the
CM resources (number of processors) then the system will create a virtual processing mechanism,
which means that each physical processor simulates a number of virtual processors, to accommodate
all the data, by subdividing its local memory. The CM computer programs are similar to ordinary
serial programs in the sense that the instructions are executed serially; however, some computations
are done concurrently. The communications between processors inside the machine and between
the front end and the CM are all transparent to the user. We have implemented both of the

explicit methods on the CM using half (8k) and full (16k) size of the CM. In these implementations
CM-FORTRAN-2.1.1 with double-precision accuracy has been used.!?

3.3. Speed

All computer codes have been tested to analyse the rib waveguide shown in Figure 3 (see
Section 4). To concentrate on the efficiency issue of the parallel machines, we have set the
number of mesh points in both directions to be equal (M, = M,) with uniform grid spacing. The
best way to compare between the two explicit methods and between the performance of the two
machines 1s by computing the total CPU time per propagational step for different numbers of
transverse mesh points and by changing the number of processors as well. Figure 4 (in log-log
scale) shows the total CPU time of both the second-order EFD-BPM and the second-order RS-

.

Instructions

The Connection Machine

Figure 2. The Connection Machine. P = processor and M = memory
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Figure 3. The rib waveguide that is used for testing both of the explicit methods

BPM per propagational step versus the number of mesh points in one of the transverse direction
x. The figure shows both the serial and the transputer results in addition to the CM results for
comparison. Some of these results have been reported in Reference 7, but the CM results are
different because the CM computer programs have been compiled with the updated version of
CM-FORTRAN. In the figure, ‘serial’ means a single processor and 2 X 2’ means that four
processors of the transputer array have been used in the computations; other notation can be
understood accordingly. ‘CM-8k’ and ‘CM-16k’ means that half and full CM resources have been
used, respectively. It can be seen from the figure that for a fixed M, the speed ot both methods
Increases as the number of processors of the transputer increases. On the other hand, generally
the CM speed is faster than the best performance of the transputer array. For example at
M, = 400, the CM-16k is faster than the 64 processors of the transputer array by 11 times for
the EFD-BPM and 6-8 times for the RS-BPM. We can notice in Figure 4 that the serial plot
does not contain results exceeding M, = 240 for the EFD-BPM and M. = 250 for the RS-
BPM, owing to memory limitations of the computer. To assess the performance of the parallel
implementations, we define the following terms:

Serial speed
Parallel speed

Speed-up = (6)

and

Speed-up
Number of processors

Efficiency = (7)

The efficiency calculation, defined by equation (7), is only for the transputer array results, where
1t is unrealistic to do that for the Connection Machine results because the processors are different
from those of the transputer array. Figure 5 shows the speed-up for both of the explicit methods.
The figure shows that the speed-up for both algorithms, for a fixed number of mesh points,
Increases as the number of processors increases. At M, = 240, the speed-up factors for the EFD-
BPM when using the full transputer size (8 by 8) and the full CM resources (CM-16k) are around
>4 and 547-3 respectively, while the speed-up of the RS-BPM when using 8 by 8 of the transputer
array and the CM-16k is around 60 and 369 respectively. The other performance indicator of the
transputer, the efficiency, is shown in Figure 6 for both of the explicit methods. It can be seen
from the figure, for both methods, that for a fixed number of processors the etficiency increases
as the number of mesh points increases. For M, = 240 the percentage efficiencies of the EFD-
BPM and RS-BPM are around 98% and 100%, respectively, when using four processors. On the
other hand and at the same number of mesh points (M, = 240) but when using 64 processors, the
percentage efficiencies of the EFD-BPM and the RS-BPM are around 84% and 94% respectively. It
can be also seen from Figure 6 that the efficiency of the RS-BPM is always higher than that of
the EFD-BPM. The reason for this is that the ratio of the computational time to the communi-
cational time between processors for the RS-BPM is higher than that of the EFD-BPM. Finally,
the comparison between the speed of the two parallel methods shows that the parallel EFD-BPM
s always faster than the parallel RS-BPM; for example when using 16k of the CM at M, = 1000
the speed of the EFD-BPM is around 6-8 times faster than the RS-BPM.
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Figure 4. Comparison between the speed of the serial and the parallel implementations of the explicit methods using the
transputer array (MIMD) and the Connection Machine (SIMD-CM). (a) The EFD-BPM: (b) the RS-BPM

4. ACCURACY ANALYSIS

In this section we show the results of the accuracy analysis of testing the two parallel explicit
methods explained in Sections 2 and 3. Although the accuracy of the serial EFD-BPM has been
verified by Reference 5, in order to compare between the two parallel algorithms we have tested
both of the parallel explicit methods to analyse three well-known different rib waveguides (Figure
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Figure 5. Speed-up of both of the paraliel explicit methods using the MIMD and the SIMD computers. (a) The EFD-
BPM; (b) the RS-BPM

3). The parameters of the three structures are shown in Table I, where the operating wavelength
of all structures is A = 1-55 pm. The transverse computational window size of structure 1 1s small
because it is a strong guide, whereas structure 3 1s a very weak guide; thus the window size must
be large to minimize the influence of the boundary. The first check involves the computation of
the fundamental mode indices (N.g) for the three structures. The second test 1s the computation
of the coupling lengths (L.) of directional couplers consisting of two core rib waveguides (see
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Figure 6. The ethciency in percentage of both of the parallel explicit methods of using the MIMD computer. (a) The
EFD-BPM: (b) the RS-BPM

Figure 3) with a separation gap of 2 um. In the calculations we have set the internal interfaces
of layers of different refractive indices to be half-way between two adjacent mesh points, the
reference index n, to be the substrate refractive index n, and zero boundary conditions at the
edges of the computational window.

The power spectral method'? has been used to compute the mode indices of the three structures
from the BPM fields. This method uses the numerical correlation function, between the input
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Table . The rib waveguide parameters used in the computations (see Figure 3)

| -

W d h r-window  v-window
Structure 1 1 M (pm) (pm)  (pm) (pum) (m)
1 3-44 3-34 1-0 20 0-2 1-1 &) 8- ()
2 3-44 3-36 1-0 3-0 0-9 0-1 330 5-0
3 3-44 3-435 i-0 4-0 3-5 243 130-0 33-0

field and the BPM computed field, to locate the peaks in the Fourier space. First the correlation
function is multiplied by a Hanning window function and then Fourier transformation 1s performed
with respect to the axial distance z. The position of the power spectral peaks can determine, by
applying a line-shape fitting technique, the parabolic propagation constant from which the
Helmholtz propagation constant can be computed. The full description of the power spectral
method can be found in Reference 13.

In the following analysis, the input field 1s set to be a gaussian field centred in the middle of
the guiding layer to excite the fundamental mode of the structure. For the computation of the
coupling length of the directional coupler, the even and the odd modes indices (N, and N,,) have
to be computed (L. = N2(N. — N.)). In order to excite the even mode, a sum of two equal-
amplitude gaussian fields centred in the middle of each arm of the coupler has been launched as
an input. The same has been done to excite the odd mode of the coupler except that the two
gaussian fields have opposite sign. The longitudinal distance z considered in this analysis is around
0-5 mm which involves 65,536 steps when Az 1s very small.

Tables II. 111 and IV show the fundamental mode indices N., and the coupling lengths L. of
structures 1. 2 and 3 respectively, computed by both of the parallel EFD-BPM and RS-BPM.
Table II, shows values of N and L. for various transversc mesh sizes Ax and Ay of both
algorithms, as well as for various step sizes Az for the RS-BPM. The EFD-BPM 1s not stable for
values of Az larger than those given in Table I1. As expected for any finite-difterence method,
the results converge as the grid spacing decreases; the convergence of the two methods is clearly
demonstrated in Table II. In order for the RS-BPM to converge, Az should be decreased as the
transverse mesh sizes are decreased. It can be observed from Table II that both methods produce
similar results around almost the same step size, thus we can conclude that the parallel EFD-
BPM is more efficient than the parallel RS-BPM since it is faster. The results of Tables 111 and
IV indicate similar conclusions to those of Table II; however, we have noticed that the values of
the mode index and the coupling length produced by the EFD-BPM for structure 2, are larger
than the values of the RS-BPM. To test this further, we have decreased Ax to 0-05 for the EFD-
BPM and calculated the new values of Neg and L. which are 3-395641865 and 0:8299 mm
respectively. These are in good agreement with the values of the RS-BPM.

To validate the results of the parallel explicit methods, Table V contains published results of
References 1 and 14 of the same structures tor comparisons. It can be observed that the results
of the EFD-BPM and the RS-BPM are as accurate as the results of Table V and very close to
those in Reference 14. It has been pointed out by Feit and Fleck.! and can be seen from Table
V. that the coupling lengths of the FFT-BPM are always shorter than any other method. In
addition to the discussion given in Reference 1, we suggest that Az should be decreased further
in order to arrive at better results.

5. CONCLUSION

[t has been demonstrated in this work that implementing the finite-difference explicit versions of
the BPM on a supercomputer results in a large speed-up of the execution of these algorithms in
comparison to the serial execution. These methods are very well suited to the parallel environment
because they inherit the locality of spatial points, which reduces the communication overhead
between parallel processors. On the other hand, the computation of the field at any given spatial
point using the ADI-BPM requires information from all parts of the problem, which 1s very
expensive in terms of parallel computing. The implementations of the EFD-BPM and the RS-
BPM on the transputer array showed that around 90-100 per cent in the efficiency gain could
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Table II. The fundamental mode indices and the coupling lengths of structure 1. computed
using the parallel EFD-BPM and RS-BPM

N oo L. (mm)
(m) (pm) (Lm) EFD-BPM RS-BPM EFD-BPM RS-BPM
0-2 0-1 0-25 - 3390792451 S 28345
0-125 — 3-392857134 — 300-27
0-0625 e 3-393297053 — 303-45
0-035 3-393440335 — 304-52 —
0-03125 — 3-393403764 — 304-28
0-015625 o 3-393430250 — 304-52
0-1 0-1 0-25 — 3.-388004414 — n. < n,
0-125 — 3-391420992 — 293-56
0-0625 — 3-392132577 — 315-68
0-03125 — 3-392304294 e 321-44
0-025 3:392362259 — 323-46 —
0-015625 — 3-392346865 — 322-78
0-0078125 —— 3-392357486 — 323-19
0-1 0-05 0:-125 — 3-382249421 — —
0-0625 — 3-389903808 — 299-00
0-03125 — 3-391376826 — 326-32
0-015625 — 3-391718884 —— 333-05
0-0124 3-301831397 — 335-50 —
J-0078125 — 3-391802926 — 334-63
0-05 0-05 0-0625 — 3-388289549 — 256-88
0-03125 - 3-390725915 — 305-00
0-015625 — 3-391287509 — 331-34
0-008 3.-391472234 — 340-66 —
0-0078125 — 3:391425235 -— 338-28
0-00390625 — 3-391459065 — 340-21
0-025 0-025 0-03125 — 3-375348807 — 24-08
0-015625 — 3-388199074 e 214-33
0-0078125 e 3-390513402 — 308-15
0-00390625 — 3-391051924 — 335-208
0-002 3-391228913 — 35&8-80 e

Table III. The fundamental mode indices and the coupling lengths of structure 2, computed
using the parallel EFD-BPM and RS-BPM

Nett L. (mm)

Ax Ay Az R

(m) (nwm) (pm) EFD-BPM RS-BPM EFD-BPM RS-BPM

0-1 0-05 0-125 — 3-385005863 — 0-84323
0-0625 | — 3-393453043 — 0-82987
0-03125 — 3-395147688 — 0-83523
0-015625 — 3-395536853 — 0-83702
0-0124 3-395678682 — G-91000 —
0-0078125 — 3-395632373 — 0-83731

be achieved. On the other hand, the implementations of the same methods on the Connection
Machine have produced even faster parallel computer codes compared to the best performance
of the transputer array implementations. Comparisons between the two parallel explicit methods
have indicated that the EFD-BPM 1s several times faster than the RS-BPM per propagational
step. The accuracy of the two methods 1s confirmed by analysing three-dimensional rib waveguides
and directional couplers, and the results have been compared with other serial techniques. It has
been concluded that the EFD-BPM is more efficient than the RS-BPM, since the latter converges
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Table IV. The tundamental mode indices and the coupling lengths of structure 3. computed
using the parallel EFD-BPM and RS-BPM

N i L. (mm)
(pm) (pm) (um) EFD-BPM RS-BPM EFD-BPM RS-BPM
0-1 (-035 0-125 — 3-4364715439 - 1-40387
0-0625 - - 3-436979326 — 1-81475
0-03125 — 3-437084489 — 1-24674
J-012 3-437155943 — 1:25277 —

Table V. The fundamental mode indices and the coupling lengths in References 1 and 14 used for comparisons

Negs L. (mm)

Structure  FD(1)*  FD(2)* WAVE" PBM-FFT' FD(1)'"* FD(2)'* WAVE!Y PBM-FFT!

1 3-390617745 3-391291712 3-390449 3-3913 357 341 N. <N, 65-1
2 3:39516625 3-395429873 3-394888 3-3960 0-797 0-811 0-827 0-71
3 3-436842513 3-436863500 3-436724 3-4365 1-273 1-347 1-968 0-93

at a similar step size to that of the EFD-BPM. Finally, the solution of the parabolic equation,
discussed in this work, is common for many large major mathematical applications where the

same implementations of the parallel explicit techniques could be used to speed up their execution
time.
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