
Joint Adaptive Rate Control and Randomized
Scheduling for Multimedia Wireless Systems

M. A. Haleem and R. Chandramouli
Multimedia System, Networking, and Communications (MSyNC) Laboratory

Department of Electrical and Computer Engineering
Stevens Institute of Technology, Hoboken, NJ 07030

Email: {mhaleem,mouli}@stevens.edu

Abstract— A joint channel adaptive rate control and random-
ized scheduling algorithm based on learning automata (LA) [4]
is presented. The scheduling is performed at the medium access
control (MAC) layer whereas the rate selection takes place at the
Physical/Link (PHY/LINK) layer. The two components residing
in the two layers exchange minimal amount of information and
adaptively achieve the best throughput and desired quality of
service (QoS) in terms of average transmission rates in the
prevailing channel conditions. Scheduling is carried out by a LA
of continuous reward penalty variate, and a discrete pursuit reward
inaction (DPRI) type [9] is used for adaptive rate selection. While
simple to implement, this technique requires no explicit channel
estimation phase. The only feedback required are the single bit
ACK signal indicating the correct reception of packets. As shown
in the convergence theorems, the algorithm achieves optimal per-
formance in “stationary” channels. With slowly varying channels,
the MCS selection algorithm sees a “quasi-stationary” channel
and adaptively converges to the optimality. Simulation results are
provided for parameters as per to HSDPA standard.

I. INTRODUCTION

The primary goal in optimizing a multi-user wireless com-
munication system is to maximize the system throughput
(successful bits/second) with limited resources such as trans-
mission power, bandwidth, and hardware complexity. Adaptive
rate selection has been of interest in 3G wireless systems [1],
[2], and [3]. The requirement therein is to adaptively choose
among the set of available modulation and coding schemes
(MCS) defining the set of rates, the MCS that maximizes
the throughput for the time varying wireless channel. The
best performance achievable is of a scheme in which the
receiver estimates and feeds back the channel state information
to the transmitter prior to transmission of each data packet.
For such a system to achieve optimality, the delay involved
in the process of channel estimation and feedback must be
negligible compared to the time scales of variations of the
channel. Estimation errors, errors in feedback, and feedback
delays are among the obstacles to overcome to achieve optimal
throughput. Adaptive techniques become good alternatives as
they can operate when the channel state is unknown or only
partially known and they perform excellently in low mobility
environments.

Further, user satisfaction requires a guaranteed throughput.
Recent work on “throughput optimization subject to fairness
in service” such as in [11] and [12] involve feedback of an

index representing the received signal to interference plus
noise ratio (SINR) by all the users prior to each transmission.
The transmitter (base station) then schedules one or more users
with the best SINR values during the next time slot. When it
comes to fairness of service, one can think of many different
metrics such as “equal time”, “equal rate”, and “proportional
fairness” [12]. In a wireless multimedia environment however,
the rate requirement of a user depends on the application –
streaming video, voice, text messages, and web browsing to
name a few. In such a scenario, fairness of service means
admission of a user with a throughput guarantee to support
the application in concern. Thus the overall requirement of
an efficient multi user multimedia system is to maximize the
overall throughput subject to the quality of service (QoS)
guarantee in terms of the individual throughput values of the
users to support the applications of interest. Also worthwhile
to note in this context, is the recent interests in the optimization
of wireless systems with joint consideration of multiple levels
in the layered systems architecture, leading to the phrase,
“cross layer optimization” [14].

In this paper, we propose and analyze a two-level stochastic
control algorithm based on learning automata(LA) [4] for
adaptive MCS selection and user scheduling in each “time
slot”. This algorithm adaptively learns and chooses the best
MCS to maximize the throughput in the prevailing channel
condition of a user, and computes a randomized schedule to
achieve the requested throughput of each user. The adaptive
learning of MCS is to be implemented in the physical/Link
(PHY/LINK) layer whereas user scheduling is carried out
in medium access control (MAC) layer with information
exchange between these two layers.

In section II to follow, we present the formulations of the
algorithm. Section III establishes the theorems on convergence
of the algorithm in stationary and time varying wireless
channels. The simulation results illustrating the performance
are given in section IV. Conclusions follow in section V.

II. JOINT RANDOMIZED SCHEDULING AND STOCHASTIC

RATE SELECTION

A LA maintains an action (control) probability vector
p(n) = [p1(n), p2(n), · · · , pr(n)] to select an action among
a set of actions at the time (iteration) n. Following an action
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at time n, the automaton receives a feedback indicating a
reward (success) or a penalty (failure). The change in the
probabilities in each update can be continuous in [0,1] or of
discrete values. In a continuous reward penalty (CRP) LA, the
probability pi(n) of action i is updated based on this feedback.
In the class of LA of discrete, reward-inaction type, there is no
update in p(n) for a penalty while it is updated by a discrete
amount for a reward. Such an approach has been observed
to have superior convergence properties [6]. As introduced
by Oommen and Lanktot in [9], a good policy to update the
probability vector p(n) is of a pursuit algorithm that always
rewards the action with current minimum penalty estimate, or
in other words, the one that “pursues” in the direction of best
reward. It has been shown that stochastic automaton of discrete
pursuit reward-inaction (DPRI) type outperforms others in
speed of convergence. In the following subsections we present
the details of the proposed algorithm for user scheduling and
MCS selection.

A. Randomized User Scheduling

The user scheduler assumes a best effort queue and a
set of K users each with a throughput requirement. Users
to be served in each time slot is selected according to a
service probability vector, ps(n) = [ps

0(n), ps
1(n), · · · , ps

K(n)]
where ps

0(n) is the probability associated with the “best effort
queue”. Service probability of a user is updated following
transmission of P packets or when the time elapsed since the
last update is Q slots, whichever occurs first. The update is
an increment/decrement in the probability of assignment of the
user in concern. The increment/decrement of the probability of
assignment is a function of the current value and the difference
between the achieved short term throughput and the requested
throughput. The increment/decrement of the probability is
compensated for, by a corresponding decrement/increment in
the probability of the “best effort queue”. The user scheduling
algorithm is summarized as follows.

Parameters
Rreq the set of requested throughput values.
Rave(n) the set of achieved throughput values

during the time interval n − Q0 + 1 to n.
a, b, η scaling parameters (0 < {a, b} ≤ 1 and η > 0)
Pseudo-code
Initialize ps

i (n) = 1/(K + 1), for 0 ≤ i ≤ K.
Repeat

1) Take control from PHY/LINK layer rate adaptation
algorithm.

2) Select a user to serve in the next time slot with proba-
bilities ps(n) = [ps

0(n), ps
1(n), · · · , ps

K(n)].
3) If Q0 = min{time for P,Q} achieved for the selected

user i, goto step 4; else goto step 7.
4) Compute ν = Rreq

i −Rave
i (n)

ηRreq
i

.
5) Let

βi(n) =




1, if ν > 1
ν, if 1 > ν > −1

−1, if ν < −1
(1)

6) Update ps(n) according to the following.
for βi(n) > 0,

ps
i (n + 1) = ps

i (n) + aps
i (n)βi(n) (2)

ps
0(n + 1) = ps

0(n) − aps
i (n)βi(n) (3)

for βi(n) < 0,

ps
i (n + 1) = ps

i (n) − bps
i (n)|βi(n)| (4)

ps
0(n + 1) = ps

0(n) + bps
i (n)|βi(n)| (5)

7) Pass control to PHY/LINK layer rate adaptation algo-
rithm for the scheduled user.

End Repeat

B. Adaptive Rate Assignement

Once the scheduler selects a user i based on the current
probability vector ps(n), the rate adaptation algorithm ran-
domly selects a rate (corresponding to an MCS) from the
set of r rates, R = {Rj : j = 1, 2, · · · , r} following the
probability vector pR

i (n) = [pR
i1(n), · · · , pR

ir(n)] of user i.
The DPRI algorithm for adaptive MCS selection for user
i(0 ≤ i ≤ K) maintains a vector of running estimates
of throughput values D̂i(n) = [D̂i0(n), D̂i1(n), · · · , D̂ir(n)]
where D̂ij(n) = Rj(1 − P̂ e

ij(n)) for 1 ≤ j ≤ r. In
this, P̂ e

ij(n) is the estimate of probability of frame error
when jth MCS is selected with the available SINR. This is
computed as the ratio of the count of absent ACK signals
to the count of instances the rate is selected, during the
estimation “window”. Fair estimation requires a sufficiently
long estimation window. On the other hand, too long of an
estimation window may result in sub-optimal performance as
it fails to detect short term peaks and valleys in the time
varying channel envelop. Initially, all the rates are assigned
an equal probability of 1/r. Then the rate selection proceeds
with the fixed pR

i (n) until every MCS is selected at least M
(a tunable parameter) number of times. Then the estimation
of P̂ e

ij(n) and hence the update of pR
i (n) starts and continues.

At a given time n, the frame error probabilities are computed
to be P̂ e

ij(n) = 1
M

∑Lij(n)

k=Lij(n)−M+1 Iij(k) where Iij(k) is
an indicator function s.t. Iij(k) = 0 if an ACK is received
following the transmission of a packet at kth attempt and
Iij(k) = 0 otherwise. Lij(n) is the number of times the
rate Rj is selected from n = 0 till time n. Following the
transmission of each data frame, the probability pim(n) of the
best rate Rm of user i is incremented by (r − 1)∆ where
∆ = 1

rN is the smallest step size. N here is the resolution
parameter. The proposed user rate selection algorithm can be
summarized as follows.

Parameters
Lij(n) Number of times the rate Rj is selected from

time 0 till n for user i.
Iij(k) “0” or “1” on receiving or not receiving ACK

following the kth use (1 ≤ k ≤ Lij(n)) of rate Rj .
B a bias to prevent pR

ij(n) = 0 ∀i and ∀j to
facilitate tracking of time varying channel.

0-7803-8533-0/04/$20.00 (c) 2004 IEEEIEEE Communications Society 1501

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on April 17, 2009 at 10:22 from IEEE Xplore.  Restrictions apply.



Pseudo-code
Initialize pR

ij(n) = 1/r, for all i and for all j.
Repeat

1) Take control from user scheduler at time n.
2) Pick a rate Rj(1 ≤ j ≤ r) according to probability

distribution pR
i (n).

3) Update Iij(k) and Lij(n) on receiving or not receiving
an ACK signal.

4) Update P̂ e
ij(n + 1) and thus D̂ij(n)according to the

following.

P̂ e
ij(n + 1) =

1
M

Lij(n)∑
k=Lij(n)−M+1

Iij(k) (6)

m = arg max
j

D̂ij(n) (7)

5) If Lij(n) ≥ M for all j (initialization phase completed)
goto step 6; else goto step 7.

6) Update pR
i (n) according to the following equations:

pR
ij(n + 1) = max{pR

ij(n) − ∆, B},∀j �= m (8)

pR
im(n + 1) = 1 −

∑
j �=m

pR
ij(n + 1). (9)

7) Pass control to user scheduler with the Rave
i informa-

tion.

End Repeat

III. CONVERGENCE OF THE STOCHASTIC ALGORITHM

The convergence properties of CRP and DPRI algorithms
are analyzed in [7] and [9] respectively. The proof of con-
vergence therein are in the context of stationary channels
i.e., for fixed Dij(n) so that the probability vectors ps(n)
and pR

i (n)∀i converge arbitrarily close to the optimum when
allowed to run for sufficiently long time. We postulate that
if the channel variations are sufficiently low relative to the
speed of convergence, or in other words if the channel is
quasi-stationary, the algorithm can adaptively optimize ps(n)
and pR

i (n)∀i. Each time the channel state changes ps(n)
and pR

i (n)∀i undergo changes until a new optimum set of
probabilities are achieved. Such changes require us to avoid
any element of pR

i (n)∀i from getting set to null. Thus we
introduce the bias parameter B in the second-level automaton.
Then the rate adaptation automaton learns the best rate for a
user i such that pR

im(n) is arbitrarily close to 1 − (r − 1)B.
Optimality requires that the convergence completes within a
time duration small compared to the duration the channel
would stay in each state before a transition. Further, the user
scheduling algorithm should augment the selection probability
ps

i (n) along with ps
0(n), so that to bring the throughput of the

user to the requested value with sufficient rapidity.
In the sequel we first show that the first level automa-

ton of user scheduling algorithm can achieve the requested
throughput of each user. Next we state the theorems on the
convergence of the second level automaton of the channel
adaptive rate assignment algorithm to the optimal rates.

Lemma 1: For any user i, with the optimal PHY layer trans-
mission rate of Rm in a given channel state, and a sufficiently
slowly varying channel let preq,m

i be the selection probability
required by the randomized user scheduling algorithm to
achieve the requested throughput, Rreq

i = Rm(1−P e
im)preq,m

i .
The iterative updating process converges such that ps

i (n) →
preq,m

i w.p. 1 as n → ∞.
Proof: From (2)-(5), the conditional expectation of the

change in ps
i (n) can be expressed as

E[∆ps
i (n)|ps

i (n)] = {aPr(βi(n) ≥ 0)
k0∑

k=0

|βK
i (n)|Pr(K = k) −

b(1 − Pr(βi(n) ≥ 0))
Q0∑

k=k0+1

|βK
i (n)|Pr(K = k)}ps

i (n)

where βK
i (n) stands for the value of βi(n) conditioned on the

assignment of k out of Q0 slots to user i. Further Pr(K =
k) is the probability of assigning k out of P last slots to
user i (which follows a binomial distribution with success
probability ps

i (n)). k0 is the number of slots required to be
assigned to user i to achieve the requested rate Rreq

i . Thus
we have Pr(βi(n) ≥ 0) = Pr(K ≤ k0) which monotonically
decreases as ps

i (n) increases. Further |βk0
i (n)| = 0 and |βk

i (n)|
is symmetric around k = k0 and increases proportional to
|k − k0|. It can be easily seen that for any given k0, the
part of the expression for E[∆ps

i (n)|ps
i (n)] within the curly

brackets is a monotonically decreasing function of ps
i (n). Thus

the parameters a and b can be tuned so that E[∆ps
i (n)|ps

i (n) <
preq,m

i ] is positive and E[∆ps
i (n)|ps

i (n) > preq,m
i ] is negative.

Thus by the sub/super-martingale convergence theorems [4]
we conclude that the update process converges with probability
one as n → ∞ and can be made convergent to the desired
value of preq,m

i with the proper choice of parameters a and b.

In the above proof there is an underlying assumption that
ps
0(n) of (3)is sufficiently large to achieve the desired ps

i (n) for
all users i = 1, · · · ,K. Having established Lemma 1, on the
convergence of user selection automaton, it remains to show
that the rate selection automaton converges to optimality with
quasi-stationary channels. To this end we state the following
theorems without proof which are found in [9]. For simplicity,
the user index i is omitted in the writing.

Theorem 1: Suppose there exists an index m and a time
instance n0 < ∞ such that D̂m(n) > D̂j(n),∀j �= m and
all n ≥ n0. Then there exists an integer N0 such that for all
resolution parameters N > N0, pm(n) → 1 with probability
one as n → ∞ and B → 0.

Theorem 2: For each rate, Ri, assume pi(0) �= 0. Then for
any given constants δ > 0 and M < ∞, there exist No < ∞
and n0 < ∞ such that under the DPRI algorithm, for all
learning parameters N > N0 and all time n > n0: P{each
rate chosen more than M times at time n}� 1 − δ.

Theorem 3: In every stationary channel, the DPRI is ε-
optimal. More explicitly, given any ε > 0 and δ > 0, there
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exists a N0 < ∞ and a n0 < ∞ such that for all n � n0 and
N > N0: P [|Pm(n) − 1| < ε] > 1 − δ as B → 0.

In the original form of Theorem 1, the bias parameter B
is not present as it has been for stationary “environments”.
Nevertheless, the proof with B requires only minor changes.
Theorem 1 states that convergence is achieved as n → ∞.
However, it is the Theorem 3 that establishes the convergence
to the optimality with a required degree within a finite time.
Theorem 2 is to prove that the condition for Theorem 3 is
achievable within finite time.

IV. SIMULATION RESULTS

The simulation was carried out for a frequency flat fading
radio link with a single antenna at the transmitter and a single
antenna at the receiver. We present here the results for two
specific channels namely a “stationary” channel and a “time
varying” channel. The realizations of channels were generated
for 20000 time slots (frames). We consider a set of six rates,
{0.12, 0.24, 0.36, 0.48, 0.60, 0.72} (Mb/s) which are typical in
3G wireless systems and wireless LANS such as 802.11b. The
frame duration was taken to be 1 transmission time interval
(TTI) which was 0.667ms, and the lengths of bit streams in
each “data frame” was selected to match the transmission rate
in each time slot. The parameter settings of user selection
automaton were P = 50, Q = 100, a = 0.2, b = 0.1, and η =
0.2. Those of rate selection automaton were M = 10, N = 10.
The bias parameter B was set to “0” for static channels
and to 0.01 for time varying channels. For a given SINR,
the frame error probability, P e

ij of the selected MCS j of
user i were read out from a pre derived set of curves for
transmission through additive white Gaussian noise (AWGN)
channel. The ACK/NACK signals were generated based on
such error probabilities.

The simulation results for the stationary channel as men-
tioned above are presented in Fig. 1 and 2. Included in
the results are the performance of a MCS selection scheme
based on perfect channel state information (PCSI) at the
transmitter with no feed back delays or errors. In such a
scheme the transmitter is considered to know the channel so
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Fig. 1. Time evolution of scheduling probabilities in stationary channel;
frame duration = 1 TTI (0.667ms).
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Fig. 2. Throughput comparison of DPRI and PCSI in stationary channel
(averaged over consecutive 50 frames ); frame duration = 1 TTI (0.667ms).

that to select the rate that maximizes the throughput given by
Di(n) = Rj(1 − P e

ij(n)) over all j = 1, 2, · · · , r for each
user 0 ≤ i ≤ r. Shown in Fig. 1 are the evolution of user
selection probabilities when there are two QoS users each with
an average rate requirements of 0.24 and 0.12 Mb/s and a best
effort queue. The best effort user is assumed to have a fixed
SINR of 15dB and the QoS users 12 and 9 dB. Fig. 2 shows the
convergence of the average rates of QoS users to the required
average rates. Note that there are short term fluctuations due
to frame error probabilities resulting from AWGN.

Figs. 3-6 show the results for time varying channel. The
number of users and their rate requirements are set to the same
values as in the case of stationary channel. The average SINRs
of the users were set to 15, 12, and 9dB. The time variations
in the channels were generated using Jakes’ model [10] with
13 taps. Fig. 3 shows the signal envelops. Fig. 4 gives the
evolution of user selection probabilities. When the SINR of a
user increases/decreases, the probability of selection adaptively
decreases/increases to maintain the average transmission rate
to the requested value. Note that as in Fig. 5, the short term
average transmission rates achieves the requested rates within
first few iterations and remains at the requested values. There
is no effort by the algorithm to regulate the transmission rate
of the best effort queue. Shown in Fig. 6 is the evolution of
rate assignment probability vector, pR

1 (n) of QoS user 1. The
correspondence to the variation in channel SINR is observable.

V. CONCLUSIONS

A two-level hierarchy of stochastic learning algorithm for
multi user wireless channel was formulated and studied. The
algorithm adaptively increases the frequency of selecting the
modulation and coding schemes that maximize the throughput
for the fading wireless channel and schedules user to be
transmitted in each time slot so that to achieve the requested
transmission rates. The algorithm is based on stochastic learn-
ing automata that maintain vectors of probabilities for random
selections of rates (determined by a finite set of modulation
and coding schemes) for each user and to select the users to
be transmitted in each time slot. These vectors of probabilities
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are updated based on the parameters derived using the ACK
signals feedback from receivers following the transmission
of data packets. This algorithm eliminates explicit channel
state estimation and feed back. Theorems were established
to show that when the channels are stationary i.e., when
the channel signal power to noise (additive) power ratios
remain constant, the algorithm is guaranteed to convergence
to the optimal modulation and coding scheme of each user
and achieves average transmission rates as requested by the
users. It is also shown that when the channel variations
are sufficiently low, the algorithm can adaptively change the
rate selection probabilities and user selection probabilities to
converge to the new optimal solution as the channels vary with
time. Simulation results using the typical parameters of third
generation wireless systems and wireless lans were presented
to illustrated the performance.
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