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Abstract. In this paper, we model the adversary (eavesdropper) present
in the wireless communication medium using probabilistic models. We
precisely formulate the security-throughput optimization and derive an-
alytical solutions. The effect of different adversary models, and single
and multi-rate modulation schemes (BPSK and MQAM) are studied.
Simulation results are given to show that significant throughput gain
can be achieved by using link (channel) adaptive and adversary adaptive
encryption techniques compared to fixed block length encryption.
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1 Introduction

Traditionally, design of encryption algorithms and their parameters has used
only the security against an adversary attack as the main criterion. To achieve
this goal, the cipher is made to satisfy several properties including the avalanche
effect [1][2].

The avalanche effect principle requires that a minor change to the plain text
or the key must result in significant and random-looking changes to the cipher
text. For a given transformation to exhibit the avalanche effect, an average of
one half of the output bits should change whenever a single input bit is com-
plemented. This implies that there should not be any noticeable resemblance
between two ciphertexts obtained by applying two neighboring keys for encrypt-
ing the same plain text. Otherwise, there would be considerable reduction of the
keyspace search by the cryptanalyst.

We note that block ciphers that satisfy the avalanche property are very sensi-
tive to bit errors induced by the wireless link. This means that a single bit error
in the received encrypted block could lead to about half the decrypted block to
be in error (error propagation), resulting in throughput loss when the channel
introduces errors. Hence, there is a fundamental trade-off between security and
throughput in encryption based wireless networks. We explore this trade-off in
this paper and investigate methods to optimize it.
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It is customary to measure the level of security in encrypted data against
cryptanalysis, as the amount of work (computation) required by the adversary
to crack the ciphertext (encrypted information). Computationally secure encryp-
tion is achieved if the cost of cracking the information is higher than the value
of the information and if the time required to crack the informaiton exceeds the
useful time period of the information being sent [1]. Meanwhile, it is reasonable
to say that the level of security can only be quantified relative to the strength
of the adversary present in the environment. For mobile wireless environment,
the adversary’s strength also varies with the location and time, and cannot be
predicted deterministically. In other words, the adversary’s “strength” to crack
a cipher is a random parameter that could be modeled using a probability dis-
tribution. It is reasonable to assume that the ability of the adversary to crack
the cipher text becomes less probable as the computational complexity of attack
increases.

In this work, we propose to model the adversary strength probabilistically.
The model assumes a finite set of discrete values for the maximum possible
block lengths an adversary can crack. Note that the strength of a block cipher is
decided by the minimum of the length of key and the length of plaintext, the set
of block lengths represent the minima of the lengths of planitext/key pairs. If the
adversary is capable of cracking a cipher with a block length of N bits then (s)he
is capable of cracking any block length less than or equal to N bits. We associate
a probability to each possible attack strength of the adversary. In particular, we
consider two probability distributions namely uniform leading to the linear model
and exponential leading to the exponential model. It is reasonable to assume
that in a typical communication medium, the probability of the presence of
an adversary with certain strength decreases as the strength increases. Such a
model is justified from the following fact. In the absence of a shortcut attack (e.g.
linear and differential cryptanalysis [1]), the computational strength required by
the attacker to crack the cipher increases exponentially with the block length.
For example, it is exponentially harder to crack 128 bit AES [3] compared to
a 64 bit DES [4]. Thus an exponential model is deemed an appropriate one.
Nevertheless, the linear model can be considered as the representation of the
worst case scenario where we assume that the presence of adversary with a
given strength has the same probability for all values of strength. In this case, we
assume that the probability of the adversary reduces to zero beyond a maximum
defined block length.

The wireless communication channel quality is a highly time varying param-
eter due to the environmental noise and fading [5]. Traditionally, encryption
designs do not consider the effect of bit errors occurring during the transmis-
sion of information through the channel and this issue is considered to be an
orthogonal problem that should be handled by efficient coding and modulation
techniques. In contrast, it is seen in recent work [6] that present and future wire-
less communication systems and networks can greatly benefit from an encryption
design that considers the channel quality. Such an approach makes it possible
to achieve a desirable tradeoff between the security and performance. However,



3

security cannot be merely reduced to increase throughput. The presence of ad-
versaries play a crucial role in security throughput tradeoff.

In the optimization problems formulated in this paper, we make the as-
sumption that the channel states are known for the extent of the message being
transmitted. The solution derived with such an assumption provides us an upper
bound on the performance. Further, the study presented in this work considers
block encryption.

In Section 2 we discuss the measure of security based on the probabilistic
models of adversary strength. In Section 3 we present the discussion on the trade-
off between the security and the throughput performance. The optimization
problems are formulated and the solutions are derived. Sample numerical results
are given in Section 4.

2 Channel Model and Security Measure

In a typical packet mode communication, frames consisting of fixed length of bit
stream (with fixed modulation schemes) or symbol stream (variable modulation
schemes) are formed. The frame lengths are in general much larger than the
encryption block lengths and may consist of multiple encrypted blocks. Let a
message be sent by forming n frames of lengths Li bits for i = 1, · · · , n and
transmitted in distinct time intervals using encryption block lengths Ni, i =
1, · · · , n. Ni is selected by the optimization procedure based on the channel
condition. With the block fading [7] assumption on the wireless channel, all the
information bits in a frame are encrypted using the same encryption block length
as the quality of the channel is assumed to be fixed over the frame duration.

We define the vulnerability (which increases as the encryption block length is
decreased) 0 6 Φ 6 1 of a message as the expected fraction of the total message
being successfully decrypted by the adversary. Let the frames be arranged in the
ascending order of the respective encryption block lengths. If the adversary’s
attack strength is α bits, then the adversary can successfully crack all the data
frames with encryption block length less than or equal to α. Assume that there
are K(6 n) distinct encryption block lengths being used and mk be the number
of frames with encryption block length less than or equal to Mk, k = 1, · · · , K,
and Pr(α = Mk) be the probability that the attacker’s strength α is Mk. Note
that Pr(α = Mk) also is the probability with which the mk frames (in the ordered
list) would be cracked by the adversary resulting in the leakage of a fraction
xk =

∑mk

i=1 li of the total message, where li is the frame length normalized by
message length (li = Li∑n

j=1 Lj
). Thus we can define the vulnerability Φ of the

message as the expected leakage given by,

Φ =
K∑

k=1

xkP (xk) (1)



4

where P (xk) = Pr(α = Mk) is the probability of exposing a fraction xk of the
total message. From a known result in probability theory, this is equivalent to

Φ =
K∑

k=1

Pr(x > xk). (2)

Further, if each frame is encrypted with a distinct block length we have K = n
and the above equation reduces to

Φ =
n∑

i=1

Pr(α > Ni) (3)

3 Security-Throughput Tradeoff Optimization

For the discussion in this section, we consider two probability distributions,
namely uniform and exponential to model the adversary strength leading to re-
spectively the linear and exponential adversary strength models. We show in
the sequel that with linear model, the optimization problem is equivalent to
“fractional knapsack” problem and therefore the optimum algorithm has linear
execution time [8]. With the exponential model, the optimal solution resem-
bles “water-filling” algorithm [9], which also has a linear execution time. As
discussed in the introduction we assume that a single bit error during the de-
cryption process would cause the loss of entire block of encrypted information.
The throughput per block is given by Ri(1−Pi)Ni ≈ Ri(1−PiNi) where Ri and
Pi are respectively the transmission rate selected for the frame and the chan-
nel bit error probability. The approximation is valid when the channel bit error
probability is sufficiently small. If there is any bit error in an encrypted block
within a frame, the avalanche effect would cause propagation of the error to the
entire block leading to discarding of such a block of Ni bits. However, blocks of
data with no bit errors can be decrypted without any errors and can be accu-
mulated in the receiver as useful data. With such an approach, the throughput
of the message (sequence of frames) can be expressed by,

T =
n∑

i=1

Ri(1− PiNi) (4)

In the sequel we present the optimization process to compute the optimum
values of Ni for a known sequence of channel instantiations. The procedures are
presented for the two different adversary models.

3.1 Linear Adversary Strength Model

Let the probability mass function of the attacker strength be a uniform distri-
bution i.e., Pr(α = Ni) = 1

Nmax−Nmin
for i = 1, · · · , n where Nmin and Nmax are
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the minimum and maximum block length used in the encryption system. Then
for the linear model we have,

φi = Pr(α > Ni) =
Nmax −Ni

Nmax −Nmin
, i = 1, · · · , n (5)

We maximize the throughput given by,

T =
n∑

i=1

Ri(1− Pi(Nmax − (Nmax −Nmin)φi)) (6)

subject to the conditions

φmin 6 φi 6 φmax, i = 1, · · · , n (7)

1
n

n∑

i=1

φi 6 Φ0 (8)

Here, Φ0 is the maximum allowable average vulnerability level, and φmin and
φmax are the minimum and maximum allowable values of the vulnerability of
a frame corresponding to a maximum and a minimum encryption block length,
respectively. Under the assumption of continuous values for φi, the optimal solu-
tion is achieved with the equality in the condition 1

n

∑n
i=1 φi 6 Φ0. By expanding

(6) and omitting the terms that are independent of φi,∀i, the problem reduces
to the maximization of the following cost function over {Ni}:

T ′ =
n∑

i=1

wiφi (9)

where, wi = PiRi. This problem is a special case of fractional knapsack problem
which is solvable in polynomial time. Selecting φis in the non-increasing order of
maximum wi maximizes T ′ and hence T [8]. As any data frame in the message
should be assigned at least the minimum vulnerability level, φmin corresponding
to the maximum encryption block length, Nmax, the formulation can be modified
such that the optimization problem is

max
φ1,··· ,φn

n∑

i=1

wiφi such that

1
n

n∑

i=1

φi 6 Φ′0; 0 6 φi 6 φmax − φmin (10)

where Φ′0 = Φ0 − nφmin. The following greedy algorithm optimally solves the
problem. The proof of this claim follows along the lines discussed in [10].

1. Inititalization: Allocate a vulnerability level of φmin for all frames i, i =
1, · · · , n.

2. Sort the frames in the non-increasing order of wi = PiRi, i = 1, · · · , n.
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3. Allocate the additional maximum allowed vulnerability level of less than or
equal to φmax − φmin for each frame i in the sorted order, i.e., wi > wi+1.
That is, allocate φmax − φmin units to frames i = 1, · · · , j∗ − 1 for some j∗,
fewer than φmax − φmin or 0 for frame j∗ and 0 for i = j∗ + 1, · · · , n with
the sum total of the additional allocation is Φ′0.

3.2 Exponential Adversary Strength Model

Let the attacker strength be given by:

φi = Pr(α > Ni) = e−kNi (11)

where k > 0 is a constant. We are required to maximize the throughput given
by

T =
n∑

i=1

Ri(1 +
Pi

k
loge φi) (12)

subject to the conditions

φi − φmin > 0, i = 1, · · · , n (13)
φmax − φi > 0, i = 1, · · · , n (14)

Φ0 − 1
n

n∑

i=1

φi = 0 (15)

where Φ0 is the maximum allowable overall vulnerability level, and φmin and
φmax are the minimum and maximum values of the vulnerability of a frame cor-
responding to a maximum and a minimum encryption block length respectively.
The equality in (15) results from the observation that maximum of T is achieved
by using the maximum allowed overall vulnerability. The augmented objective
function can be written as,

C =
n∑

i=1

Ri(1 +
Pi

k
loge φi) + ν(nΦ0 −

n∑

i=1

φi)

+
n∑

i=1

λi(φi − φmin) +
n∑

i=1

µi(φmax − φi) (16)

where ν, λi, µi, i = 1, · · · , n are constants (Lagrange multipliers). The Karush
Kuhn-Tucker Conditions (KKC) [11] for this problem are obtained by considering
the vanishing point of the first order derivative of C w.r.t. φi and also from the
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complimentary slackness. Thus we have,

φi =
RiPi

k(µi + ν − λi)
λi(φi − φmin) = 0
µi(φmax − φi) = 0

λi > 0
µi > 0

nΦ0 −
n∑

i=1

φi = 0

ν > 0 (17)

for i = 1, · · · , n. Therefore the optimal value of φi is found from one of the
following three cases.

Case 1: λi = 0, µi = 0 ⇒ φmin < φi < φmax and we have φi = αwi with
α = 1

kν , ν > 0 and wi = RiPi

Case 2: λi = 0, µi 6= 0 ⇒ φi = φmax

Case 3: λi 6= 0, µi = 0 ⇒ φi = φmin

The following iterative algorithm provides the optimal solution. Any value of φi

computed complies with one of the three cases above.

1. Sort the channels in the non-increasing order of wi, i = 1, · · · , n; let j = 1
2. Compute α = φmin

wj

3. Compute φi = αwi for i = 1, · · · , n; if φi < φmin set φi = φmin; if φi > φmax

set φi = φmax

4. If nΦ0 >
∑n

k=1 φi set j = j + 1 and goto step 2); else goto step 5)
5. If nΦ0 =

∑n
k=1 φi the current set of φi, i = 1, · · · , n are optimal; else goto

step 6)
6. The optimum α is in between the two values say αj and αj−1 computed

in the last two iterations. Fine tune as follows. Default to the allocation
corresponding to α = αj−1. Let l be the index of the largest wi, i = 1, · · · , n
such that φi < φmax, and imin is the index of smallest wi such that φi > φmin

7. Set α = φmax
wl

; if α < φmin
wimin+1

set φi = αwi, i = 1, · · · , n; φi(φi < φmin) =
φmin; φi(φi > φmax) = φmax; goto the step (8); else set l = l − 1 and goto
step (9)

8. If
∑n

i=1 φi = nΦ0 optimal values are found; else if
∑n

i=1 φi < nΦ0 set l = l+1
and goto step (7); else set l = l − 1; goto step (9)

9. The optimal α is found from α = 1∑l
i=imin

wi
(nΦ0 − (n − imin)φmin + (l −

1)φmax); set φi = αwi, i = 1, · · · , n, φi(φi < φmin) = φmin, and φi(φi >
φmax) = φmax



8

The following discussion establishes that this algorithm is indeed optimal. Con-
sider the quantity to be maximized namely T =

∑n
i=1 Ri(1 + Pi

k loge φi) sub-
ject to the constraints as in (13)-(15). This is equivalent to maximizing S =∑n

i=1 wi loge φi where wi = RiPi with the set of constraints. Each of the terms
in the summation expression of S is concave and therefore the optimum alloca-
tion of φi resembles “water-filling” solution. Let yi = wi loge φi. The marginal
gain of additional allocation to the ith channel is given by ∂yi

∂φi
= wi

φi
. Let the

channels be ordered such that w1 > w2 > · · · > wn. The optimal allocation
procedure should first allocate φi = φmin for i = 1, · · · , n. Next, starting with
the first channel in the ordered list, φ1 should be increased from the initial value
of φmin until the condition ∂y1

∂φ1
= ∂y2

∂φ2
is reached which is equivalent to φ1

w1
= φ2

w2
with φ2 = φmin. From this point onward both φ1 and φ2 should be increased such
that φ1

w1
= φ2

w2
until the common ratio is equal to φ3

wmin
. The procedure continues

including more and more channels while maintaining equal marginal gains for all
channels under consideration. Due to the upper limit of φmax on φi, they may
be capped at φmax. The procedure continues until the condition nΦ0 =

∑n
i=1 φi

is met. Our formulation of the algorithm is to carry out this allocation process
in discrete values for computational efficiency.

The algorithm starts by allocating φi = φmin, i = 1, · · · , n and proceeds with
the iteration by selecting increasing values for α so that to assign φi > φmin

to more and more channels in the increasing order of wi until the condition
nΦ0 >

∑n
k=1 φi is achieved. If the equality of constraint is not achieved, the

subsequent steps performs fine tuning to achieve the optimal solution.

4 Numerical illustrations

We carried out computations of sample performance curves with parameter set-
tings as follows. Cases with fixed transmission rate namely BPSK and multi-rates
namely MQAM were considered. Block length equivalents of the target, mini-
mum, and maximum security levels for these computations were respectively
128, 16 and 1024 bits. For the exponential adversary model, the decay constant
ki was set to 0.0001 for all i = 1, · · · , n. It was assumed that the channel gain
remains fixed during the transmission of a frame. For the optimization, n = 5000
channel samples were drawn from Rayleigh distribution with each setting of av-
erage signal to noise ratio (SNR). The optimum encryption block lengths were
assigned based on the algorithm for each of the adversary models. The through-
put was computed with optimum allocation of block lengths and with fixed block
length of 128 bits. The gain in throughput was computed as Topt−Tfixed

Tfixed
, where

Topt and Tfixed are throughput with respectively the optimum and fixed block
length allocations.

Fig. 1 shows the throughput gains of proposed adaptive encryption with
respect to fixed block length encryption for single rate (BPSK) signaling. For
the optimization process, the anticipated bit error probabilities during channel
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Fig. 1. Throughput gain of proposed channel adaptive encryption compared to
fixed block length encryption for single rate (BPSK) transmisision. Linear and
exponential adversary attack models are compared.

instantiations were evaluated using the following expression.

Pi(γi) =
1
2
erfc(

√
γi)1 (18)

Here γi and γ̄ are the frame-wise SNR and the average SNR. A throughput
gain of 2.5 fold is observable with γ̄ = 0dB. Note that in this example the
performance with exponential adversary model is slightly inferior to that of
linear adversary model at low average SNR values. With exponential model, the
probability of presence of an adversary increases as the encryption block length
decreases. Thus the optimization process has a tendency to allocate larger block
lengths to a larger fraction of frames compared to the case with linear model.
Therefore, throughput loss is higher with exponential model compared to linear
model. Nevertheless, the optimization process has its advantage with respect
to fixed block length encryption, both with linear and exponential models. As
the SNR increases the throughput gain with both models approaches a fixed
value of about 0.2. Such a convergence is justified as follows. With large SNR
values it is possible to use the largest possible block length for significantly large
fraction of frames without causing much performance degradation. However, as
we are interested in achieving a level of security equivalent to that with fixed
block length encryption, the optimization algorithm is constrained to maintain

1 erfc(x) = 2√
π

∫∞
x

e−t2dt
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Fig. 2. Throughput gain of proposed channel adaptive encryption compared to
fixed block length encryption for multi- rate (MQAM) transmisision. Linear and
exponential adversary attack models are compared.

the allocation of large block lengths within a limit. Therefore the achievable
throughput gain with respect to fixed block length encryption saturates at large
SNR values.

Fig. 2 shows the performance with multi-rate (MQAM) transmission. The
bit error probability of M-arry QAM is given by the well known approximation

Pi(γ) ≈
√

M − 1√
Mlog2

√
M

erfc

[√
3log2M

2(M − 1)
γ

]
(19)

where M is the constellation size. In this computation we include BPSK and
M = 4, 16, and 64 with which we have the set of transmission rates R = 1, 2, 4,
and 6 bits/symbol. Rate and block length allocation in this case was performed
in two steps. The maximum feasible rate Ri was selected from this set such that
Ri 6 log2(1 + γ). The block length allocation followed with the optimization
algorithms. Gain of 50 fold is observable at low SNR with linear models. How-
ever, with exponential model, the gain is maximized at moderate values of SNR
around 2 dB, but decreases both at smaller and larger SNR values. The fact that
transmission rates are optimally selected for the prevailing channel conditions
by the channel adaptive rate selection procedure reduces the room for further
optimization of throughput. In addition, the fact that the flexible encryption
algorithm for exponential model has the tendency to select larger block lengths
for a larger fraction of channel instantiations compared to the case with linear
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model, brings the throughput performance close to that of fixed block length
encryption. However for a range of intermediate SNR values, the optimization
process shows significant performance improvement. As in the case of fixed rate
transmission, the throughput gain converges to a fixed value of about 2 with
both adversary models.

5 Conclusions

In this paper, we proposed and studied probabilistic models for adversary strength
to crack a cipher. Based on these models, we formulated techniques where the
encryption strength is a variable matched to the time varying channel, thereby
improvement was brought to the throughput performance of wireless link with
data encryption compared to using a fixed encryption block length. We presented
optimal block length allocation algorithms with uniform and exponential distri-
butions for the attacker strength leading to respectively the linear adversary
model and the exponential adversary model. With linear model, the optimal
allocation process uses fractional knapsack algorithm. We developed an algo-
rithm resembling “water-filling” process for the case with exponential model.
Numerical results were presented showing significant gains in throughput for a
range of practical average SNR values. Results were presented for single rate
(BPSK) transmission and channel adaptive multi-rate (MQAM) transmission.
Different trends in throughput gains were observable with the two different ad-
versary models and the associated optimization algorithms. This work shows the
advantage of a channel adaptive flexible block length encryption scheme which
is achievable with probabilistic models for adversary strength.
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