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Adaptive Downlink Scheduling and Rate Selection:
A Cross-Layer Design
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Abstract—In this paper, we discuss a cross-layer design for joint
user scheduling and adaptive rate control for downlink wireless
transmission. We take a stochastic learning-based approach to
achieve this. The scheduling is performed at the medium access
control (MAC) layer, whereas the rate selection takes place at the
physical/link (PHY/LINK) layer. These two components residing
in the two layers exchange information to ensure that user defined
rate requests are satisfied by the right combination of transmission
schedules and rate selections. The method is highly efficient for
low mobility applications with mobile speeds in the order of a few
kilometers per hour. While simple to implement, this technique
requires no explicit channel estimation phase. The only feedback
used are the single bit ACK/NACK signal indicating the correct
reception/failure of the packet. As shown in the convergence theo-
rems, the algorithm achieves optimal performance in “stationary”
channels. With slowly varying channels, the rate selection algo-
rithm sees a “quasi-stationary” channel and adaptively converges
to an optimal solution. Simulations performed using a third-gener-
ation wireless system, namely, high-speed downlink packet access
(HSDPA) validate the theoretical results.

Index Terms—Adaptive resource assignment, cross-layer opti-
mization, learning automata, stochastic methods, third-generation
(3G) wireless.

I. INTRODUCTION

THE PRIMARY goal in optimizing a multiuser wire-
less communication system is to maximize the system

throughput (successful bits/second) with limited resources such
as transmission power, bandwidth, and hardware complexity.
Adaptive rate selection has been of interest in third-generation
(3G) wireless systems [1], [2], [3]. The requirement therein
is to adaptively choose among the set of available modulation
and coding schemes (MCSs) defining the set of rates, the MCS
that maximizes the throughput for the time-varying wireless
channel. The best performance achievable is of a scheme in
which the receiver estimates and feeds back the channel state
information to the transmitter prior to transmission of each data
packet. For such a fast feedback system to achieve optimality,
the delay involved in the process of channel estimation and
feedback must be negligible compared with the time scales of
variations of the channel. Estimation errors, errors in feedback,
and feedback delays are among the obstacles to overcome in
achieving optimal throughput. Adaptive techniques become
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good alternatives as they can operate when the channel state is
unknown or only partially known.

Further, user satisfaction requires a guaranteed throughput.
Recent work on “throughput optimization subject to fairness in
service” such as in [11] and [12] involve feedback of an index
representing the received signal-to-interference-plus noise ratio
(SINR) by all the users prior to each transmission. The trans-
mitter (base station) then schedules one or more users with the
best SINR values during the next time slot. When it comes to
fairness of service, one can think of many different metrics such
as “equal time,” “equal rate,” and “proportional fairness” [12].
In a wireless multimedia environment however, the rate require-
ment of a user depends on the application—streaming video,
voice, text messages, and web browsing to name a few. In such
a scenario, fairness of service means admission of a user with a
“short-term” throughput guarantee to support the application in
concern (This could also be put in the perspective of delay con-
straints). Thus, the overall requirement of an efficient multiuser
multimedia system is to maximize the overall throughput sub-
ject to guaranteed individual short-term throughput(s) of users
to support the application(s) of interest. Also, worthwhile to
note in this context, is the recent interests in the optimization
of wireless systems with joint consideration of different levels
in the layered systems architecture, leading to the phrase “cross-
layer optimization” [14].

In this paper, we propose and analyze a two-level stochastic
control algorithm based on learning automata (LA) [4] for
adaptive MCS selection and user scheduling in each “time slot.”
This algorithm adaptively learns and chooses the best MCS to
maximize the throughput in the prevailing channel condition
of a user, and computes a randomized schedule to achieve
the requested throughput of each user. The scheme does not
require explicit channel state feedback from receiver. Rather,
the ACK/NACK signals from the receiver at the medium access
control (MAC) layer that indicate the successful reception of
packets are used as the sole feedback in the learning process.
The adaptive learning of MCS is to be implemented in the
physical/link (PHY/LINK) layers, whereas user scheduling is
carried out in MAC layer with information exchange between
these two layers. In particular, the PHY/LINK layer informs
of the rate assigned during the transmission of each packet
to the MAC layer, so that this information is used in the user
scheduling process. Further, the ACK/NACK feedback signals
received by the MAC layer is passed to the PHY/LINK layer
for the purpose of learning the best rate to be assigned.

In Section II to follow, we present the formulations of the al-
gorithm. Section III establishes the theorems on convergence of
the algorithm in stationary and time-varying wireless channels.
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The simulation results illustrating the performance are given in
Section IV. Conclusion follows in Section V.

II. JOINT RANDOMIZED SCHEDULING AND

ADAPTIVE RATE SELECTION

A learning automata (LA) maintains an action (control)
probability vector to select
an action among a set of actions at time (iteration) . Following
an action at time , the automaton receives a feedback indicating
a reward (success) or a penalty (failure). The change in the
probabilities in each update can be continuous in [0, 1] or of
discrete values. In a continuous reward penalty (CRP) LA, the
probability of action is updated based on only the last
feedback. In the class of LA of discrete, reward-inaction type,
there is no update in for a penalty while it is updated
by a discrete amount for a reward. Such an approach has
been observed to have superior convergence properties [6]. As
introduced by Oommen and Lanktot in [9], a good policy to
update the probability vector is of a pursuit algorithm
that always rewards the action with current minimum penalty
estimate, or in other words, the one that “pursues” in the
direction of best reward. It has been shown that stochastic
automaton of discrete pursuit reward-inaction (DPRI) type
outperforms others in speed of convergence. In the following
sections, we present the details of the proposed algorithm for
user scheduling and MCS selection which are based on the
LA algorithms.

A. Randomized User Scheduling

The user scheduler assumes a best effort queue and a set of
users each with a throughput requirement. Users to be served

in each time slot is selected according to a service probability
vector , where is the
probability associated with the “best effort queue.” The terms,
best effort queue here refer to a pool of data (possibly from
more than one user) which does not have a strict short-term
throughput requirement. Service probability of a user is up-
dated following transmission of packets to “the user” or when
the time elapsed since the last update of the user is slots
whichever occurs first. The update is an increment/decrement
in the probability of assignment of the user in concern. The in-
crement/decrement of the probability of assignment is a func-
tion of the current value and the difference between the achieved
short-term throughput and the requested throughput. The incre-
ment/decrement of the probability is compensated for, by a cor-
responding decrement/increment in the probability of the best
effort queue. The user scheduling algorithm is summarized as
follows.
Parameters

number of packets transmitted before an update;
maximum time elapse (slots) between updates;
the vector of requested throughput values;
the vector of achieved throughput values during the
averaging window;
scaling parameters ( and ).

Pseudocode
Initialize , for .
Repeat

1) Take control from PHY/LINK layer rate adaptation
algorithm.

2) Select a user to serve in the next time slot with
probabilities .

3) If achieved for the selected
user , go to step 4; else go to step 7.

4) Compute .
5) Let

(1)

6) Update according to the following
for :

(2)

(3)

for

(4)

(5)

7) Pass control to PHY/LINK layer rate adaptation
algorithm for the scheduled user.

End Repeat

B. Adaptive Rate Selection

Once the scheduler selects a user based on the current prob-
ability vector , the rate adaptation algorithm randomly se-
lects a rate (corresponding to an MCS) from the set of rates,
following the probability vector
of user . The number of bits in the packet is selected such that
the data frame can be completely transmitted within a trans-
mission time interval (TTI) with the selected MCS. In a typ-
ical 3G wireless system such as high-speed data packet access
(HSDPA), a data frame may extend to more than one TTI. The
method presented here is readily applicable to such scenario as
well. In the formulation of the problem and the algorithm to
follow, is the index of the sequence of TTIs and the SINR of
the channel during th TTI is expressed by . The proba-
bility of frame error with a given channel SINR, and th rate
(MCS) is expressed as . The set of rates available are

(bits/s). Thus, the throughput achieved
with a rate is given by

(6)

Ideally, the transmitter is required to find the index of the best
transmission rate (MCS) of user , i.e.,

(7)
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Such an approach requires the knowledge of channel state
during each TTI. The stochastic learning and rate selection
algorithm presented in this paper randomly selects an MCS
prior to transmission of a frame. The rate selection probability
vector is altered by an iterative updating process such that
the probability of assigning the best MCS is maximized. At
the bootstrap , the probabilities
are assigned equal values of . Then, the rate selection and
transmission proceeds with the fixed until every rate
is selected at least (a tunable parameter) number of times
after which is augmented at each . Following each
transmission, the transmitter receives an ACK/NACK signal
indicating the successful reception/failure of the data packet. The
current and the past ACK/NACK signals are used in augmenting
the probability vector toward the optimum. This is done
by maintaining a time-varying estimate of throughput values,

for each rate . Following each TTI,
an update of and are carried out considering the
last ACK/NACK signals of each rate. Thus, the length of
the “moving window” used in the estimations (in terms of
number of TTIs) could vary over the time. We may write

(8)

where is an indicator function s.t. or 0
depending on whether the feedback following th use of rate

is an ACK or NACK. is the number of TTIs for
which the rate is selected during the time from the start till
the th TTI. Following the transmission of each data frame,
the index of the best rate is decided, the probabilities

are decreased by , and the
probability of the estimated best rate is increased by

, where is the smallest step size. here
is a tunable resolution parameter. If the channel state remains
fixed for sufficiently long time, the algorithm can increase the
selection probability of the best rate to unity (and set

for all ). While this could maximize the
throughput in a stationary channel, adaptivity to time-varying
channel requires us to maintain nonzero values of for all

and for all . Therefore, we maintain a minimum probability
of called “bias” for all rates. The proposed rate selection
algorithm can be summarized as follows.
Parameters

number of transmitted packets required for the estima-
tion of throughput ;
resolution parameter in the probability step size;

is the adaptation step size;
the rate index of the largest element in

;
number of times the rate is selected from time 0 till

for user ;
“1” or “0” on receiving an ACK/NACK following the

th use of rate ;
a bias to prevent and to facilitate
tracking of time-varying channel.

Pseudocode

Initialize , for all and for all .
Repeat

1) Take control from user scheduler at time .
2) Pick a rate according to probability

distribution .
3) Update and on receiving an ACK/NACK

signal.
4) Update according to (8).
5) If for all (initialization phase completed)

go to step 6; else go to step 7.
6) Detect the index of the estimated best rate and

update according to the following equations:

(9)

(10)

7) Pass control to user scheduler along with
information.

End Repeat

III. OPTIMALITY AND CONVERGENCE OF THE ALGORITHMS

The convergence properties of CRP and DPRI algorithms
are analyzed in [7] and [9], respectively. The proof of conver-
gence therein are in the context of stationary channels, i.e.,
with fixed so that the probability vectors and

of each user converge arbitrarily close to the optimum
when allowed to run for sufficiently long time. We postulate
that if the channel variations are sufficiently low relative to
the speed of convergence, or in other words if the channel is
quasi-stationary, the algorithm can adaptively optimize
and . Each time the channel state changes and

undergo changes until a new optimum set of values
are achieved. Such changes require us to avoid any element
of from getting set to null. Thus, we introduce the
bias parameter in the second-level automaton. Then, the
rate adaptation algorithm learns the best rate for a user such
that is arbitrarily close to . Optimality
requires that the convergence completes within a time duration
small compared with the duration the channel would stay in
each state before a transition. Further, the user scheduling
algorithm should augment the selection probability along
with , so that to bring the throughput of the user to the
requested value with sufficient rapidity.

In the sequel, we first show that the first-level automaton of
user scheduling algorithm can achieve the requested throughput
of each user. Next, we present the analysis of the channel
adaptive rate assignment algorithm to establish the convergence
properties. Also presented are the asymptotic theorems on the
convergence of the rate selection algorithms supporting the
analysis.

Lemma 1: For any user , with a given transmission rate
and a fixed channel state, let is the selection proba-

bility required by the randomized user scheduling algorithm to
achieve the requested throughput .

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on April 17, 2009 at 13:49 from IEEE Xplore.  Restrictions apply.



1290 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 6, JUNE 2005

The iterative updating process converges such that
.

Proof: Let is the probability of assigning out of
last slots to user (which follows binomial distribution with

success probability ). From (2)–(5), the conditional expec-
tation of the change in can be expressed as

(11)

where stands for the value of conditioned
on the assignment of out of slots to
user . is the number of slots required to be assigned
to user to achieve the requested rate, i.e., to achieve

. Thus, we also have
which monotonically decreases

as increases. Further, and is sym-
metric around and increases proportional to . It
can be easily seen that for any given , the part of the expres-
sion for in (11), within the curly brackets is
a monotonically decreasing function of . Thus, the param-
eters and can be tuned so that
is positive and is negative. Thus,
by the sub/supermartingale convergence theorems [4], we
conclude that the update process converges with probability
one as and can be made convergent to the desired value
of with the proper choice of parameters and .

Having established Lemma 1, on the convergence of user se-
lection automaton, it remains to show that the rate selection au-
tomaton converges to optimality with quasi-stationary channels.
The approach presented in this paper for adaptive rate assign-
ment follows a random selection of MCS, where the assignment
probabilities are updated iteratively. We are in need to analyze
the behavior of this stochastic iterative technique with respect to
the convergence to the optimal solution, and we require to quan-
tify the throughput loss due to delay in tracking the time-varying
channel. In the discussion to follow, the user index has been
dropped for simplicity.

From (8), the rate selection algorithm finds the index
of the estimated best rate maximizing the throughput

at time s.t.

(12)

where

The probability of making the right decision can be computed
as follows. Let the best rate at time is unique. Let

be the probability that the estimated best rate is the actual
best rate , or at time . We can write

(13)

or equivalently

(14)

The above probability is readily obtained by using bino-
mial probability distribution. Since for all

, the quantity of (14) may
exceed when . Our formulation below
takes into account the fact that
in such cases. Let be the largest nonnegative integer

, where is a nonnegative integer. Define
the indicator function s.t.

if condition within parentheses satisfied
else

we define the parameter for as

Then, from (14), we have

(15)

In (15) and the discussion to follow, we omit the time index
for simplicity. Note that when is equal to and

the term becomes unity. The expression can
be rewritten using binomial distribution as follows:

(16)

where is the probability of “successful transmission” of a
packet using the rate , which can be expressed as

(17)

In this, is the set (range) of for which the rate is
the optimum, is the probability density function
(pdf) of conditioned on , and can be written as

else
(18)

where is the unconditional probability density function of
SINR, . For the slow, flat-fading channel, the signal envelop
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can be modeled with Rayleigh pdf. In turn, is modeled with
exponential pdf [15]. Thus

(19)

where is the ratio of mean signal power (averaged over fading)
to the mean noise power.

A. Convergence to Optimal Solution

Having derived the probabilities of successful detections, we
proceed to derive the conditions to be met for convergence to
the optimal solution. At a given time the update policy as in
(9) and (10) will increase the probability (the subscript

and superscript are dropped for brevity) of the actual best
rate with probability and will decrease it with
probability , where is as given in (16). We may
write

(20)

where w.p. stands for “with probability.”
If then the algorithm has converged.

Assuming the algorithm has not converged to the th action,
there exists at least one nonzero component of say
with and, hence, we assert that

(21)

Since is a probability vector

(22)

and, thus

(23)

As long as there is at least one nonzero component where
, it is clear that we can decrement and, hence,

increment by at least . Thus, we may
rewrite (20) as

(24)

where is bounded by 0 and . An expression for the
expected value of conditioned on the current state of
the channel defined by and the state of algorithm defined
by can be obtained as follows. Define the duplet

. Then, the expectation of conditioned
on can be written as

(25)

It is understood in writing (25) that has not achieved
the maximum value of . In the sequel, we derive

the conditions for to be submartingale and thereby the
conditions to increase until the maximum value of

is achieved.
Since is bounded by , we

have

(26)

and we can rewrite (25) as

(27)

Observe that the right-hand side of (27) if and only if

(28)

in which case (27) is a submartingale. Assume that the algorithm
achieves the condition above at time and continues to hold
for all . Then, by submartingale convergence theorem,
the sequence converges s.t.

(29)

as with the limit of in this case being
.

It remains to investigate if the requirement in (28) for con-
vergence is satisfied by the system being studied. Given that

has not achieved the maximum achievable value, we
have and, therefore, . Fur-
thermore, the maximum possible value of is . There-
fore, we have , and we conclude
that for all is a necessary condition
for the sequence to convergence. In the initial
phases of convergence process . This implies
that the sufficient value of for convergence lies in the range

with . In fact, it is seen from (28)
that is sufficient for to achieve a
value of up to . As illustrated in the numerical
results presented in Section IV, as given by (16) achieves a
value of 0.5 even with small values of for a typical set of

, where the achievable throughput
with each rate are considerably far apart from each other. As

increases toward the maximum achievable value, de-
creases and the value of required for continued conver-
gence increases. Nevertheless, it is seen from numerical compu-
tations that can be made significantly close to the upper
bound with moderate values of .

The resolution parameter and, thus, plays a vital role in
the performance of the algorithm. When the channel changes
states very slowly, larger values of produce better results.
This is verified by observing that in (28), would require

for (27) to be submartingale. This implies that
can achieve a value higher than with

. Thus, a larger means smaller that makes
be closer to maximum achievable of with

. Nevertheless, when the channel changes
rapidly, large values of are not of much help as there are fever
iterations left before a change of state. Thus, as speed of mobile
increases, the optimal (producing the best overall throughput)
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decreases. These and other facts are illustrated via numerical
results in Section IV.

B. Asymptotic Theorems

In this section, we establish asymptotic theorems reinforcing
the analytical results presented above. These theorems follow
the line of analysis presented by Oommen and Lanctôt in [9].
Theorem 1 establishes that the proposed algorithm can achieve
a required number of trials, with probability arbitrarily close
to unity within a finite time. Theorem 2 to follow states that
there exists an s.t. if every rate is selected at least

times, the best rate achieving the best throughput
is determined with a probability arbitrarily close to unity. Thus,
from Theorems 1 and 2, we deduce Corollary 1 proving that
the proposed algorithm can indeed detect the best rate with a
probability arbitrarily close to unity.

Theorem 3 establishes a result crucial to the performance
of the algorithm. In this it is proven that the time required to
achieve the maximum value of , with a probability arbi-
trarily close to unity is finite and is a function of the resolution
parameter .

Theorem 1: For each rate , assume . Then,
for any given set of constants ,
and there exists a time such that
under the proposed rate adaptation algorithm, for all
time every rate chosen more than
times at time .

Proof: Let be the number of times the rate is
chosen up to time . For any iteration of the algorithm

is chosen (30)

The magnitude by which a selection probability can decrease in
an iteration is bounded by . Thus during first iterations

is not chosen (31)

With , from (30) and (31)

(32)

where . Since

, we may write

(33)

Since , we may write

(34)

Consider right-hand side of (34)

(35)

Using L’Hopital’s rule times (35) reduces to

(36)

Since the limit exists, for every , there exists
s.t. the left-hand side of (34) is . Since for any

implies , we have

, thus, left-hand
side of (34) for all . Therefore, for any rate

whenever . Define

Then, for all and for all , we have
implying

(37)

Theorem 2: There exists an for every such
that if every rate is selected at least times by the time ,
and if the difference between two largest throughput values in
the given channel is , then

(38)

such that

(39)

Proof: Let be the number of times the rate is se-
lected up to time . If is the estimate of the reward prob-
ability for rate , then by weak law of large numbers, for a
given , there exists an s.t. if is chosen
times

(40)

If , then each an every will be in
an neighborhood of with a probability , thus
leading to (38). Let be the estimate of best throughput
achieved using the rate at time . By assumption the best
throughput is unique and, therefore, for all

. But we know that, if is in the neighborhood of
for all

Thus, we have (39).
Corollary 1: Provided that the channel remains in a state for

a sufficiently long time with a fixed best rate , for any
there exists a time s.t. for all

(41)

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on April 17, 2009 at 13:49 from IEEE Xplore.  Restrictions apply.



HALEEM AND CHANDRAMOULI: ADAPTIVE DOWNLINK SCHEDULING AND RATE SELECTION: A CROSS-LAYER DESIGN 1293

Proof: From Theorem 1, we know that we can find a
s.t. for all

By Theorem 2, we have

Define the events

and

By using the result , we have

with , we have (41) for all .
Theorem 3: In every stationary channel, the adaptive rate se-

lection algorithm is “optimal.” More explicitly, given any ,
there exists a such that for any resolution parameter

for all .
Proof: Let the event has

taken place at time . Then, for all the probabilities
monotonically decrease for all but in which case

the probability monotonically increases according to the update
rule

Assume that the algorithm has not converged to th action.
Then, there exists at least one nonzero component of , say

with and, hence, we assert that

Since is a probability vector
and, therefore

As long as there is at least one nonzero component
, we can decrement and, hence, increment by

at least . Hence

where is bounded by 0 and . As we know is
bounded above by implying and, therefore,

within a finite number of iterations.
As for the length of time involved, it is maximum for the case
with only one s.t. . For this worst case, it
requires more iterations to achieve

. Thus, in the worst case as ,
convergence completes at time .

Fig. 1. Probability � of correct detection of best rate,m as a function of the
number of trials, and M as obtained from (16). In this example, m = 5 or
0.60 Mb/s is the optimal rate.

Define the event . Then, we
have shown above that for

(42)

where is as defined in the Proof of Corollary 1. By Corollary
1, we have for all . Therefore, by using
the result , we have for all

(43)

IV. NUMERICAL RESULTS AND ILLUSTRATIONS

Numerical computations and simulations were carried out
with parameters of a 3G wireless system namely HSDPA
operating at 2.0 GHz. A frequency flat-fading radio link was
assumed. The transmitter and the receiver were assumed
to have single antennas. The set of six transmission rates

(Mb/s) corresponding to a
set of MCS is used in our illustrations. The ACK/NACK signals
to follow the transmission of each data frame were simulated
using a set of prederived frame error probability versus SINR
curves. These curves have been derived for the performance
in additive white Gaussian noise (AWGN) channel with an in-
terleaver/deinterleaver and turbo-coder/decoder in the system.
The set includes one curve for each MCS for the range of SINR
of interest. The frame duration was taken to be one TTI, which
is 0.667 ms. Instantiations of the fading channel were generated
using Jakes’ model [10] with 13 taps.

Shown in Fig. 1 is the trend of , the probability of detecting
the best rate as , the number of ACK/NACK signals used in
the estimation increases. This curve has been derived using (16)
with the set of values
corresponding to the set of transmission rates mentioned above
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TABLE I
THROUGHPUT PERFORMANCE OF STOCHASTIC ADAPTIVE ALGORITHM

AT A SET OF SPEEDS WITH BEST CHOICES OF N AND B.
M = 1 AND AVERAGE SINR = 0 dB

Fig. 2. Simulated SINR variation at a speed of 1 km/h with average SINR =
0 dB and frame duration = 1 TTI (0.667 ms).

at 9 dB average SINR. It is observed that the value of in-
creases rapidly with , and is sufficient to achieve

, which guarantees the convergence of such that
. Any typical set of values of re-

sembles this example and have sharp drops in as the rate
increases at most of the practical values.

In the following, we present the simulation results first for
the single user scenario highlighting the performance of the
rate selection algorithm. The performance with multiple users
are illustrated next. It was found from the system simulations
that results in the best performance except at very low
speeds. This observation is consistent with the intuitive fact that
when the channel variations take place at time scales compa-
rable to the TTI, the estimate would not improve by in-
creasing . Thus, the best estimate is achieved with minimum

. We compare the performance of the proposed method to that
of an ideal scheme where the channel state in each TTI is known
to the transmitter.

Shown in Table I are the average throughput of the proposed
algorithm as a %ge of the throughput of ideal scheme, at a set
of speeds. With each set of parameters, the simulation was per-
formed for a sufficient length of time (in the order of 60 000
frames) and the average throughput values were computed for
each such parameter setting. The optimum values of parameters

, and maximizing the average throughput at each speed
were found by repeating the simulation for a range of values of
these parameters. At zero speed (stationary channel), the pro-
posed method achieves 100% of the throughput of ideal scheme.
A 71.6% throughput is achieved at a speed of 3 km/h. As speed

Fig. 3. Rate selection probabilities, p (n) at 1 km/h withM = 1; N = 1, and
B = 0:028. Average SINR = 0 dB and frame duration = 1 TTI (0.667 ms).

Fig. 4. Throughput (averaged over ten frames) at 1 km/h with M = 1,
N = 1, and B = 0:028. Average SINR = 0 dB and frame duration =
1 TTI(0.667 ms).

increases, the value of achieving best throughput decreases
and becomes around 1 km/h. Further, it is seen that as
speed increases, the optimum bias increases. Note that timely
detection of state changes requires testing of every rate at suffi-
ciently small time intervals, which in turn requires sufficiently
large probabilities of selection for every rate. An increase in the
value of fulfils this. With smaller than optimum values of ,
the penalty arising out of delayed detections becomes more se-
vere than the loss due to the drop in the maximum probability
of selecting the best rate.

Figs. 2–4 illustrate the tracking behavior of the stochastic
adaptive rate selection at a speed of 1 km/h. The simulated
time variation of the channel SINR is shown in Fig. 2. Fig. 3
shows the evolution of selection probabilities as the channel
state changes. Fig. 4 compares the short-term average (over ten
frames) throughput of stochastic technique to that of the ideal
scheme. As shown in Table I, the mismatch in tracking for this
case results in a throughput loss of 19.1%.
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Fig. 5. Time evolution of scheduling probabilities in stationary channel.

Fig. 6. Throughput comparison of DPRI and PCSI in stationary channel
(averaged over consecutive 50 frames).

The performance of the joint scheduling and rate selection
is illustrated for two specific channels namely a “stationary”
channel and a “time-varying” channel. The realizations of chan-
nels were generated for 20 000 time slots (frames). The param-
eter settings of user selection automaton were

, and . Those of rate selection au-
tomaton were . The bias parameter was set
to “0” for static channels and to 0.01 for time-varying channels.
The simulation proceeds as follows. At the start, all the users
are assigned equal probability of selection of and all
MCS are assigned equal probability of selection of for all
users. The MCS selection probabilities of a user is kept fixed
until all the values are selected at least for transmission of 50
packets. Then, the estimations of throughput corresponding to
each rate, and update of MCS selection probabilities start and

Fig. 7. SINR variation against time for the set of users at a speed of 0.02 km/h
(based on Jakes’ model).

Fig. 8. Time evolution of probabilities in time-varying channel.

continue in each time slot. User selection probabilities are up-
dated at the end of each packets or when time slots elapsed
since last update.

The simulation results for the stationary channel are pre-
sented in Figs. 5 and 6. Included in the results are the perfor-
mance of a MCS selection scheme based on perfect channel
state information (PCSI) at the transmitter with no feed back
delays or errors. In such a scheme the transmitter is considered
to know the channel so that to select the rate that maximizes the
throughput. Shown in Fig. 5 are the evolution of user selection
probabilities when there are two users each with an average rate
requirements of 0.24 and 0.12 Mb/s and a best effort queue. The
best effort user is assumed to have a fixed SINR of 15 dB and
the QoS users 12 and 9 dB. Fig. 6 shows the convergence of the
average rates of QoS users to the required average rates. Note

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on April 17, 2009 at 13:49 from IEEE Xplore.  Restrictions apply.



1296 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 6, JUNE 2005

Fig. 9. Throughput comparison of DPRI and PCSI in time-varying channel.

Fig. 10. Time evolution of rate selection probabilities in time-varying channel
for QoS user 1.

that there are short-term fluctuations due to the randomness in
the correct detection of best rate.

Figs. 7–10 show the results for time-varying channel. The
number of users and their rate requirements are set to the same
values as in the case of stationary channel. The average SINRs
of the users were set to 15, 12, and 9 dB. Fig. 7 shows the signal
envelops. Fig. 8 gives the evolution of user selection probabil-
ities. When the SINR of a user increases/decreases, the proba-
bility of selection adaptively decreases/increases to maintain the
average transmission rate to the requested value. Note that as in
Fig. 9, the short-term average transmission rates achieves the
requested rates within first few iterations and remains at the re-
quested values. There is no effort by the algorithm to regulate the
transmission rate of the best effort queue. Shown in Fig. 10 is the
evolution of rate assignment probability vector, of QoS

user 1. The correspondence to the variation in channel SINR is
observable.

V. CONCLUSION

The proposed cross-layer approach is shown to adaptively
compute the best transmission rate for the time-varying wire-
less channel along with schedules required to achieve the user
requested individual throughput values. There is no explicit
channel state estimation phase which results in savings in the
capacity. Compared with the channel state feedback-based rate
control approaches where the feedback requires multiple bits
depending on the number of available rates, our approach uses
only a 1 bit ACK/NACK feedback. This results in significant
savings in the energy used by a mobile device on the uplink
channel. Theorems proved in this paper show that when the
channel is stationary, i.e., when the channel signal power to
noise power ratio remain constant, the algorithm is guaranteed
to converge (almost surely) to the optimal modulation and
coding scheme of each user and achieves average transmission
rates as requested by the users. It is also shown that when
the channel variations are sufficiently low, the algorithm can
adaptively change the rate selection probabilities and user
selection probabilities to converge to the new optimal solution.
Simulation results using the typical parameters of a third gen-
eration wireless system show that the proposed algorithm is
suitable for pedestrian and low mobility applications. Further
research is needed to modify the approach to support higher
mobile speeds.
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