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Adaptive Stochastic Iterative Rate Selection for
Wireless Channels

M. A. Haleem, Member, IEEE, and R. Chandramouli, Member, IEEE

Abstract—A stochastic algorithm for channel adaptive rate se-
lection (modulation and coding scheme or MCS) is proposed. The
algorithm learns the optimal policy by iteratively augmenting a
rate selection probability vector. While simple to implement, this
technique requires no explicit channel estimation phase. The single
bit ACK/NACK signal feedback from the data link layer is used as
the input to the stochastic algorithm. As shown in the convergence
theorems, the algorithm achieves the optimal rate in “static” chan-
nels. A time varying channel is seen as a “quasi-static” channel, and
adaptively converged to optimal rates as channel state changes.

Index Terms—3G wireless, adaptive rate assignment, stochastic
learning.

I. INTRODUCTION

CHANNEL adaptive rate assignment has been of interest as
an efficient way to increase the throughput of 3G wireless

communication systems [1]. A channel adaptive transmitter op-
timizes throughput by selecting among the set of available rates,
as given by a set of modulation and coding schemes (MCS),
the one that maximizes the throughput in each “short-term”
channel state. Here the terms “channel state” refer to a range of
signal-to-interference-plus-noise ratio (SINR) for which there
is a unique optimal MCS. In an ideal scenario, the receiver
estimates the channel parameters with sufficient accuracy to
identify the MCS that maximizes the throughput for the given
channel state, and feeds back the index representing the selected
MCS. The channel feedback should take place at a sufficient rate
for the indices to be valid representations of the channel states
during each transmission. If the channel state changes fast in
comparison to the feed back rate, significant loss of throughput
can occur. There have been proposals to use data link layer
signaling or cyclic redundancy check (CRC) to improve per-
formance by augmenting the “thresholds” defining the SINR
ranges for each MCS [2] and [3].

In this paper we present an alternative approach which uses
only the data link layer ACK/NACK signal indicating the suc-
cess/failure of the transmitted data frame as feedback to adap-
tively learn and assign the best MCS in each channel state.
Since there is no explicit feedback of channel state information,
the method has significant savings in uplink capacity otherwise
spent on feedback. Note that the number of rates (MCS) dis-
cussed in the literature on 3G wireless systems varies and are
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in the order of 10 1 thus requiring four bits per frame for MCS
feedback in addition to the one bit for ACK/NACK. Thus we
have a five-fold reduction in feedback requirements.

Unless required for other purposes such as coherent demodu-
lation, this technique also can save the capacity spent on channel
estimation. The new approach is based on stochastic learning
automata [4] and [5].

II. STOCHASTIC LEARNING AND RATE SELECTION

We consider a system in which the transmitter selects the
best MCS just before each transmission time interval (TTI). The
length of the bit stream is selected such that the data frame can
be completely transmitted within a TTI with the selected MCS.
In a typical 3G wireless system such as high speed data packet
access (HSDPA), a data frame may extend to more than one
TTI. The method presented is readily applicable to such sce-
nario as well. In the formulation of the problem and the algo-
rithm to follow, is the index of the sequence of TTIs. The
SINR of the channel during a TTI is expressed by . The
probability of frame error with a given channel SINR, and th
rate (MCS) is expressed as . The set of rates avail-
able are . Thus the throughput
achieved with a rate is given by

(1)

The transmitter is required to find the index of the best trans-
mission rate (MCS) s.t.

(2)

The stochastic learning and rate selection algorithm
presented in this paper carries out this optimization by
probabilistically selecting rates and adaptively increasing
the probability of the best rate with an iterative process. It
maintains an adaptively changing selection probability vector

to select a rate among the
set of rates at each iteration . At the bootstrap ,
the probabilities , where , are assigned
equal values of . Then the rate selection and transmission
proceeds with the fixed until every rate is selected at least

(a tunable parameter) number of times after which is
augmented at each . Following each transmission, the trans-
mitter receives an ACK/NACK signal indicating the successful
reception/failure of the data packet. The current and the past
ACK/NACK signals are used in augmenting the probability
vector toward the optimum. This is done by maintaining

1[Online.] Available: http://www.nokia.com/downloads/aboutnokia/re-
search/library/mobile_networks/MNW23.pdf
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a time varying estimate of probability of frame error,
for each rate , . Each is computed to be
the ratio of the count of NACK signals corresponding to the
transmissions using rate , to the count of instances the rate

is selected, within the moving “window”. We may write

(3)

where is an indicator function s.t. or de-
pending on whether the feedback following th use of rate
is an ACK or NACK. is the number of TTI’s for which
the rate is selected during the time from the start till the th
TTI. Following the transmission of each data frame, the proba-
bilities , are decreased by and the
probability of the best rate, is increased by
where is the smallest step size. here is a “tun-
able” resolution parameter. If the channel state remains fixed
for sufficiently long time, the algorithm is able to increase the
probability to unity (and set for all

). While this could maximize the throughput in a stationary
channel, adaptivity to time varying channel requires us to main-
tain nonzero values of for all and for all . Therefore
we maintain a minimum probability of called “bias” for all
rates. The proposed rate selection algorithm can be summarized
as follows.

A. Pseudocodes of the Algorithm

Set , for .
Initialize and hence for all (using

(3) and (1)) by selecting rates with fixed until every rate
is selected at least times.

Repeat
1) At time pick a rate according to the probability

distribution .
2) On receiving ACK/NACK feedback, update using

(3) and using (1)
3) Compute the index of the best rate as in (2).
4) Augment according to the following equations:

(4)

(5)

End Repeat

B. Convergence of the Algorithm

The proposed stochastic rate selection technique is based
on the discrete pursuite reward inaction (DPRI) learning
automata, analyzed in [6]. We state the relevant convergence
theorems without proof. These theorems are applicable to a
“static” channel i.e., one in which the SINR is bounded within
a range s.t. the optimum rate, is fixed. In the sections to
follow, we present simulation results showing the adaptivity of
the technique in time varying channels.

Theorem 1: Suppose there exists an index and a time in-
stance such that , for all and
for all . Then for all resolution parameters and
for all bias parameters , with probability
one as .

Theorem 2: For each rate , assume . Then
for any given constants and
there exists such that under the
DPRI algorithm, for all time every
rate chosen more than times at time

Theorem 3: In every static channel, the DPRI is optimal.
More explicitly, given any , , and
there exists such that for all :

.
Theorem 2 above guarantees the ability of the algorithm to

select each rate a sufficient number of times to obtain fair esti-
mates of frame error rates with a probability arbitrarily close to
unity, within a finite time. This theorem follows the line of anal-
ysis as in [6]. Theorem 1 establishes the ability of the algorithm
to converge to the best rate. Theorem 3 confirms that the proba-
bility of selecting the best rate increases monotonically and can
be arbitrarily close to the maximum within finite time. Theo-
rems 1 and 3 were derived with an approach similar to that of
[6] and with the inclusion of bias parameter, .

III. SIMULATION RESULTS

The simulation was carried out with parameters of a 3G wire-
less system namely HSDPA operating at 2.0 GHz. A frequency
flat fading radio link was assumed. The transmitter and the re-
ceiver were assumed to have single antennas. The set of six
transmission rates, Mb/s
corresponding to a range of MCS is used in our illustrations.
The ACK/NACK signal to follow the transmission of each data
frame were simulated using a set of pre-derived frame error
probability versus SINR curves. These curves have been de-
rived for the performance in additive white Gaussian (AWGN)
channel with an interleaver/deinterleaver and turbo-coder/de-
coder in the system. The set includes one curve for each MCS
for the range of SINR of interest. The frame duration was taken
to be one TTI which is 0.667 ms. Instantiations of the fading
channel were generated using Jakes’ model [7] with an average
SINR setting of 0 dB. With each set of parameters, the simula-
tion was performed for a sufficient length of time (in the order
of 60 000 frames) and the average throughput values were com-
puted for each such parameter setting. The optimum values of
parameters , , and maximizing the average throughput at
each speed were found by repeating the simulation for a range
of values of these parameters.

It was found from experimentation that results in the
best performance except for very low speeds. This observation
is consistent with the intuitive fact that when the channel varia-
tions take place at time scales comparable to the TTI, the esti-
mate would not improve by increasing . Thus the best
estimate is achieved with minimum . We compare the perfor-
mance of the proposed method to that of an ideal scheme where
the channel state in each TTI is known to the transmitter. Shown
in Table I are the average throughput of the proposed algorithm
as a%ge of the throughput of ideal scheme, at a set of speeds. At
zero speed (stationary channel), the proposed method achieves
100% of the throughput of ideal scheme. A 71.6% throughput
is achieved at a speed of 3 km/h. As speed increases, the value
of achieving best throughput decreases and becomes
around 1 km/h. Further, it is seen that as speed increases, the
optimum bias increases. Note that timely detection of state
changes requires testing of every rate at sufficiently small time
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Fig. 1. Simulated SINR variation at a speed of 1 km/h with average SINR =
0 dB. Frame duration = 1 TTI (0.667 ms).

Fig. 2. Rate selection probabilities, p (n) at 1 km/h with M = 1, N = 1,
and B = 0:028. Average SINR = 0 dB, frame duration = 1 TTI (0.667 ms).

intervals, which in turn requires sufficiently large probabilities
of selection for every rate. An increase in the value of ful-
fils this. With smaller than optimum values of , the penalty
arising out of delayed detections becomes more severe than the
loss due to the drop in the maximum probability of selecting the
best rate.

Figs. 1–3 illustrate the tracking behavior of the stochastic
adaptive rate selection at a speed of 1 km/h. The simulated
time variation of the channel SINR is shown in Fig. 1. Fig. 2
shows the evolution of selection probabilities as the channel
state changes. Fig. 3 compares the short term average (over 10
frames) throughput of stochastic technique to that of the ideal
scheme. As shown in Table I, the mismatch in tracking for this
case results in a throughput loss of 19.1%.

IV. CONCLUSIONS

In this letter, we presented a stochastic learning and rate selec-
tion algorithm based on discrete pursuit reward inaction scheme
found in learning automata theory. Theorems on the conver-
gence in static channel were given. Simulation results show

Fig. 3. Throughput (averaged over 10 frames) at 1 km/h withM = 1,N = 1,
and B = 0:028. Average SINR = 0 dB, frame duration = 1 TTI(0.667 ms).

TABLE I
THROUGHPUT PERFORMANCE OF STOCHASTIC ADAPTIVE ALGORITHM AT A

SET OF SPEEDS WITH BEST CHOICES OF N AND

B. M = 1 AND AVERAGE SINR = 0 dB

excellent adaptivity in low mobility environments with mobile
speeds in the order of a few kilometers per hour. The approach
can save the bits needed for feed back of indices of optimal rates
by the mobile receivers for adaptive rate selection. With a set of
rates in the order of ten, this saves four bits per frame. This is
achieved by using the data link layer ACK/NACK signal as the
only input to the adaptive algorithm. Unless required for other
purposes such as coherent demodulation, it also can save the ca-
pacity spent on channel estimation.
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