KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS

ELECTRICAL ENGINEERING DEPARTMENT

SECOND SEMESTER 2007/2008

EE 340 (04) MAJOR EXAM I

TIME: 11:00 -11:50 A.M.

DATE: MONDAY 31-MARCH-2008

LOCATION: IN CLASS

EY	·/	
	E	EY

Student's I.D. Number:

	Maximum Score	Score
Problem 1	25	
Problem 2	25	
Problem 3	25	
Problem 4	25	
Total	100	

Problem 1 [25 points]

Consider the following volume charge density distribution, which exists in free space:

$$\rho_V = \begin{cases} \rho_o & \text{for} & \rho < a \\ 0 & \text{for} & \rho > a \end{cases}$$

Where ρ_o is some constant. Use Gauss's law to <u>derive</u> an expression for the resulting \vec{E} field in the regions:

a)
$$\rho < a$$

b)
$$\rho > a$$

$$\int D^{\circ} ds = Q$$

a)
$$D_{2\pi} \rho L = \pi \rho^{2} L \rho$$

$$= \frac{\rho \rho}{2\epsilon_{0}} \rho$$

b)
$$D = \pi \rho L = \pi a^2 L \rho$$

$$E = \frac{\rho a^2}{2\epsilon_0 \rho} \frac{a^2}{a\rho}$$

Problem 2 [25 points]

The electrostatic field $\vec{E} = x^2 \vec{a}_x + (1-y)\vec{a}_y + 2z\vec{a}_z$ [V/m] exists in free space. Calculate the corresponding:

- a) Electrostatic potential difference V_{AB} , where the rectangular coordinates of points A and B are respectively given by (0,0,0) and (0,10,8).
- b) Volume charge density at point P, whose rectangular coordinates are (2, 1, 7).

b) Volume charge density at point P, whose rectangular coordinates are
$$(2, 1, 7)$$
.

a) $V_{AB} = -\int_{A}^{B-D} \frac{d^{2}}{E} d^{2} d^{2}$

$$= -\int_{0}^{70} \frac{(1-y)dy}{(1-y)dy} - \int_{0}^{8} \frac{2}{2} \frac{2}{d^{2}} d^{2}$$

$$= 40 - 64 = -24 \quad V$$
b) $\overrightarrow{D}^{b} = \epsilon_{0} \overrightarrow{E} = \epsilon_{0} \left[x^{2} \overrightarrow{a_{x}} + (1-y)\overrightarrow{a_{y}} + 2 \cancel{2} \overrightarrow{a_{z}} \right]$

$$= \epsilon_{0} \left(2x + 1 \right)$$

$$= 5 \epsilon_{0} = 44 \quad \text{AC}$$

$$\overrightarrow{B}$$

Problem 3 [25 points]

Consider two infinitely large sheets. Sheet #1, which carries the uniform surface $12[nC/m^2]$, is placed in the y-z plane. Sheet #2 carries the uniform surface $-18[nC/m^2]$ and placed in the x-z plane. Assuming free space throughout, calculate the resulting \vec{D} field at the observation point P, whose rectangular coordinates are (-3, 3, 3).

$$\vec{D} = \frac{f_s}{z} \vec{a_n}$$

$$\vec{D}_i = \frac{12n}{2} (-\vec{a_x}) = -6 \times 10^{-9} \vec{a_x}$$

$$\vec{D}_i = \frac{18n}{2} (-\vec{a_y}) = -9 \times 10^{-9} \vec{a_y}$$

$$\vec{D}_i = \vec{D}_i + \vec{D}_i = (-6\vec{a_x} - 9\vec{a_y}) \frac{n C}{m^2}$$

Problem 4 [25 points]

Consider the two semi-infinite media, medium $1 \ (x > 0)$ and medium $2 \ (x < 0)$. The permittivities of the two media are $\varepsilon_1 = \varepsilon_o$ and $\varepsilon_2 = 5\varepsilon_o$, respectively. The plane boundary (x = 0) contains a *uniform* surface charge with density $\rho_s = 60 \times 10^{-12} [C \ /m^2]$. The electrostatic field in medium 1 is given by $\vec{E}_1 = (x - 6)\vec{a}_x + 10\vec{a}_z \ [V \ /m]$. Find:

- a) The electric field \vec{E}_1 (the electric field in medium 1) at the boundary.
- b) The electric field \vec{E}_2 (the electric field in medium 2) at the boundary.
- c) The angle θ_2 [i.e. the angle that \vec{E}_2 found in part a) makes with respect to the normal].

