KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS

ELECTRICAL ENGINEERING DEPARTMENT

SECOND SEMESTER 2007/2008

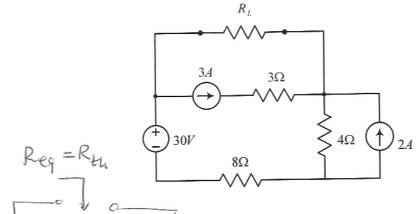
EE 201 MAJOR EXAM II

DATE: SATURDAY 3-5-2008

TIME: 10:00-10:55 AM

LOCATION: IN CLASS

Student's Name


Student's I.D. Number:

	Maximum Score	Score
Problem 1	40	
Problem 2	20	
Problem 3	40	
Total	100	

Problem 1 [40 pts]

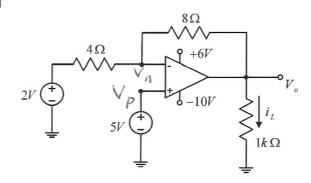
In the circuit shown below, find:

- a) R_L for maximum power transfer.
- b) The maximum power transferred to $R_{\rm L}$.

Answers:

a)
$$R_L = 12.52$$

b)
$$P_{\text{max}} = 4.08$$


$$V_{0C} = V_{th} = 30 - 3 \times 8 - 5 \times 4 = -14 V$$

$$P_{\text{max}} = \frac{V_{\text{th}}^2}{4R_{\text{th}}} = \frac{(196)}{4x^{12}} = 4.08 \text{ W}$$

Problem 2 [20 pts]

In the ideal Op Amp circuit shown below, calculate the current i_L through the $1k\Omega$ load resistor.

[Show your work clearly]

$$V_p = V_n = 5V$$

$$KCL \quad at \quad node \quad n = 0$$

$$\frac{5-2}{4} + \frac{5-V_0}{8} = 0$$

$$V_{0} = 11 V > 6V = V_{cc} = 1$$

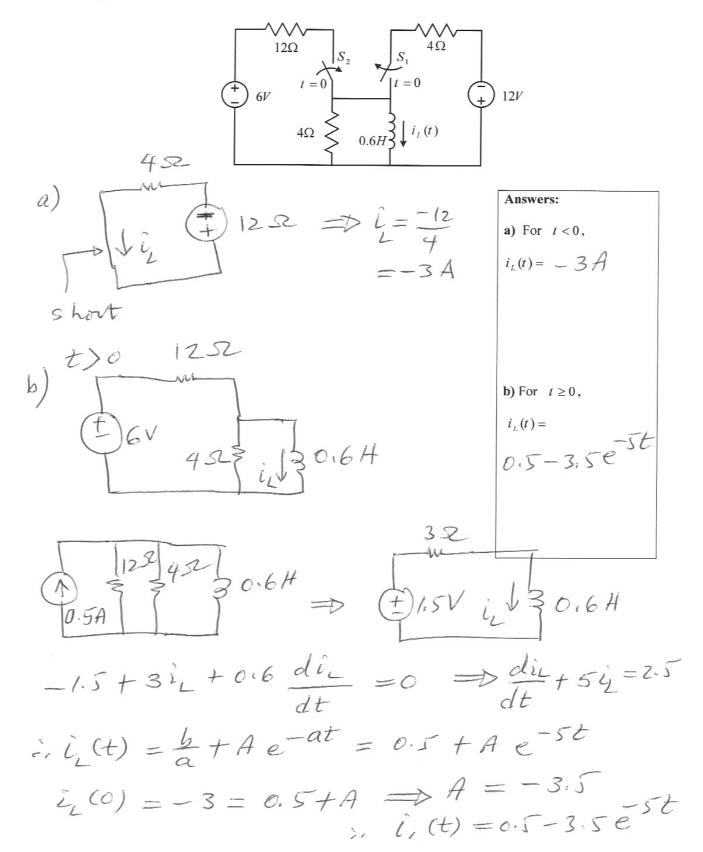
$$V_{0} = 6V$$

$$V_{0} = 6V$$

$$V_{0} = 6W$$

$$V_{0} = 6W$$

$$V_{0} = 6W$$


$$V_{0} = 6W$$

$$i_L = G_{m} A$$

Problem 3 [40 pts]

In the circuit shown below, switch S_1 has been closed and switch S_2 has been open for a long time. At t = 0, switch S_1 is opened and switch S_2 is closed suddenly. Find:

- a) $i_{t}(t)$ for t < 0.
- **b)** $i_L(t)$ for $t \ge 0$.

