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يجمع بين مزايا تحقيق معدلات عالية و  (OFDM) ام الترددي المتعامدمضاعفة الانقس تضمين
ارسال رسالة ، تم الترآيز علي تصميم جهاز الاستقبال لظام في هذه ال .نسبيا سهلة التنفيذ

)OFDM( . ةقيهذه الطر. البياناتاستعادة  و القناة لتقديرتم تطوير طرق عمياء و شبه عمياء 
عن مشكلة الاتصال لتقليل تكلفة التدريب و  المعلومات المسبقهاآبر عدد ممكن من  لستعمت

. تم ايضا تطوير طريقتان عمياء. )BER( و معدل الخطاء تقديرالتحسين دقه ل دقةالتطوير 
قناة الوالأخرى ترآز على ) ةأي بيانات المدخلات غير معروف(تتمحور حول البيانات الاولي 

طريقة الاولي، نبين آيفة إآتشاف رمز بطريقة الاآتشاف الفي  ).ةقناة غير معروفالاي (
ويستند هذا  .(Cyclic prefix) وما يرتبط بها من دوري البادءهالخرج رمز الاعمي باستخدام 
 Cyclic prefix)( لوجود دوري البادءهالي قناتين متوازيتين  (OFDM)القناة  النهج الى تحويل

 Cyclic( بادئة دوريتم افتراض  قناة،الآز على تر الطريقة الاخري التي في.في المدخل
prefix(  و افتراض قوصي)Gaussian(  لقناة والكشف عن ا تقديرل البيانات المرسلهعلي

قناة متعددة المدخلات و  للارسال علي شبه اعمىتقديم طريقة  ايضا تم .البيانات اللاحقه
  .تباطا مكانياار انتقائي و تردد متغيرة زمنيا وزات ) MIMO(المخرجات 

  

 



CHAPTER 1

INTRODUCTION

The motive of modern broadband wireless communication systems is to offer high

data rate services. The main hindrance for such high data rate systems is multipath

fading as it results in inter-symbol interference (ISI). It therefore becomes essential

to use such modulation techniques that are robust to multipath fading. Multicar-

rier techniques especially Orthogonal Frequency Division Multiplexing (OFDM) has

emerged as a modulation scheme that can achieve high data rate by efficiently han-

dling multipath effects. The additional advantages of simple implementation and high

spectral efficiency due to orthogonality contribute towards the increasing interest in

OFDM. This is reflected by the many standards that considered and adopted OFDM,

including those for digital audio and video broadcasting (DAB and DVB), WIMAX

(Worldwide Interoperability for Microwave Access), high speed modems over digital

subscriber lines, and local area wireless broadband standards such as the HIPER-

LAN/2 and IEEE 802.11a, with data rates of up to 54 Mbps [1]. OFDM is also being

considered for fourth-generation (4G) mobile wireless systems [2].
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In order to achieve high data rate in OFDM, receivers must estimate the channel

efficiently and subsequently the data. The receiver also needs to be of low complexity

and should not require too much overhead. The problem becomes especially chal-

lenging in the wireless environment when the channel is time-variant. This Thesis is

concerned with (semi) blind receivers for OFDM over block fading channels.

This introductory chapter sets the stage for the Thesis. It starts by discussing

the need for channel estimation in OFDM systems in Section 1.1. The chapter then

presents an overview of the various channel estimation techniques that have been

proposed in literature. The chapter concludes by laying out the contributions of the

subsequent chapters in Section 1.3 which also serve to outline the Thesis organization.

1.1 The Need for Channel Estimation in a Wireless

Environment

In OFDM systems1, a cyclic prefix (CP) is appended to the transmitted symbol. This

allows OFDM to deal effectively with ISI by transforming the equalization problem

into parallel single tap equalizers. This does not completely solve the problem in

a wireless environment as the equalizer taps need to be estimated. These taps are

usually time variant for a wireless channel. So it becomes essential for the OFDM

receiver to estimate the channel continuously for proper data detection.

In the following, we summarize the major requirements in an OFDM receiver

1While the remarks in this section apply to a general wireless channel, we concentrate here on
OFDM systems.
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design (channel estimation and data detection). The receiver needs to:

1. Deal with time variant channels

OFDM is a technology that is being increasingly employed in wireless systems.

This means that the receiver needs to be able to deal with mobility, i.e. with

time-variant channels. In doing so, the receiver needs to take care of the following

constraints

Reduce training overhead: The easiest way to deal with time-variant chan-

nels is to send enough pilots. Since, the channel impulse response (IR) can be

as long as the CP of the OFDM symbol, which is roughly one-fourth the OFDM

symbol length [5], each symbol would waste one-fourth of the throughput in

training. Thus, the OFDM receiver should employ more intelligent techniques

for channel estimation that would avoid the need for excessive training and deal

with time-variant channels.

Avoid any latency by relying on the current symbol only: Some tech-

niques for channel estimation might deal with the lack of enough training by

relying on past or future symbols to perform some averaging-based channel esti-

mation as is the case with many blind-based estimation techniques. This inher-

ently assumes that the channel remains constant over several OFDM symbols

which might not be true in a wireless scenario. Even if the channel is correlated

from one symbol to another [4], a filtering or smoothing approach to channel

estimation requires excessive storage and results in undesirable latency.
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Thus, the proper answer to time-variant channels is to use as much natural

structure as possible in the current OFDM symbol. This includes 1) The cyclic

prefix, 2) the finite alphabet constraint on the data, and 3) the channel finite

delay spread and correlation, and rely as little as possible on smoothing or

averaging techniques.

2. Reduce complexity and storage requirements

As pointed out above, the algorithm should bootstrap itself from the current

symbol without need for storing past data and especially without having to rely

on the future symbols. The bootstrap should not also come at the expense of

increased complexity.

3. Deal with special channel conditions

In an OFDM setting, the receiver should be able to deal with some special

channel conditions which include

CP length shorter than the length of channel impulse response: This

is usually dealt with by using some channel impulse response shortening tech-

niques.

Zeros on FFT grid of channel impulse response: The frequency domain

element-by-element relationship in OFDM (see equation (2.14) in next chapter)

is usually used for data detection. However, it is not unusual for channel’s

frequency response to be zero at some carrier i which makes it impossible to

4



detect the data resulting in an error floor in the BER curve. The receiver should

deal with this abnormality too.

Time variation within the OFDM symbol leading to inter-carrier in-

terference: For applications with high mobility, the receiver should be able

to deal with channels that vary within the OFDM symbol which gives rise to

inter-carrier interference. However, a prerequisite for solving this problem is the

ability to design a receiver that can cope with the milder block-fading variation

problem 2.

1.2 Techniques for Channel Estimation and Data

Detection

Channel estimation for OFDM systems has been an active area of research. There

have been several algorithms proposed for channel estimation in literature. These algo-

rithms can be classified according to the constraints that have been used in performing

channel estimation (and data detection) or according to the estimation approach used.

1.2.1 Constraints Used in Channel Estimation and Data De-

tection

In literature, all algorithms for channel estimation use some inherent structure of the

communication problem. This structure is produced by constraints on the data or the

2This Thesis focuses on the block fading model
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channel. In the following, we categorize the research work done on channel estimation

on the basis of the constraints used.

Data Constraints

Finite alphabet constraint: Data is usually drawn from a finite alphabet [4], [34],

[35], [57], [58].

Code: Data is coded before being transmitted which introduces redundancy and helps

in reducing probability of error [27], [28], [31], [33], [47]-[50], [56].

Transmit precoding: Precoding might be done on the data at the transmitter to

assist channel estimation at the receiver such as cyclic prefix [4], [25], [30], [31],

[40], [46], zero padding (silent guard bands) [8], [9], [10] and virtual carriers (the

subcarriers that are set to zero without any information) [42], [43], [44], [63].

Pilots: Pilots i.e. training symbols for the receiver, have been extensively used for

channel estimation in OFDM [11]-[23].

Channel Constraints

Finite delay spread: The length of channel impulse response is considered to be

finite and known to the receiver.

Frequency correlation: It is assumed that some additional statistical information

about the channel taps is known. This is usually captured by the frequency

correlation in the frequency response of the channel taps [4], [12], [31], [51], [59].

6



Time correlation: As channels vary with time, they show some form of time corre-

lation. In a wireless environment, it is introduced by the doppler effect [4], [10],

[33], [52], [54].

1.2.2 Approaches to Channel Estimation and Data Detection

The algorithms used for channel estimation in OFDM can also be divided on the basis

of approach used. These approaches can be divided into four main categories.

Training based Estimation

Pilots i.e. symbols which are known to the receiver are sent with the data symbols so

that the channel can be estimated and hence the data at the receiver (see [11]-[23]).

Use of training sequences decreases the system bandwidth efficiency [24] and they

are suitable only if the channel is assumed to be time-invariant. But as the wireless

channel is time-varying, it becomes essential to transmit pilots periodically to keep

track of the varying channel. Thus this further decreases the channel throughput.

Blind Estimation

The above limitations in training based estimation techniques motivated interest in the

spectrally efficient blind approach. Only natural constraints are used for estimation

in blind algorithms. For example, cyclic prefix and the cyclostationarity introduced

by it was used by [25], [26], [29], [30], and [46] while coding was also used along with

cyclic prefix by [31]. Redundant and non-redundant linear precoding was exploited in

[27], [28], [33], [47]-[50] for channel estimation. Virtual carriers have also been used

7



by [42]-[44] and constant modulus modulation was used by [45]. Receiver diversity

was used in [36] while [37]-[41], [44] and the references therein developed a subspace

approach using the second order statistics. The finite alphabet constraint on the data

was explored by [34] and [35] and for reducing the computational complexity involved

in it, adaptive techniques were explored by [32] and [33].

Semiblind Estimation

Semiblind techniques make use of both pilots and the natural constraints to efficiently

estimate the channel. These methods use pilots to obtain an initial channel estimate

and improve the estimate by using a variety of a priori information. Thus, in addition

to the pilots, semiblind methods use the cyclic prefix [4], [31], [40], the finite alphabet

constraint on the data as well as the frequency and time correlation of the channel

[4], magnitude error in data [55], linear precoding [56], frequency correlation [12],

[31], and [59], gaussian assumption on transmitted data [60], the first order statistics

[61], subspace of the channel [62], receiver diversity and virtual carriers [63] for channel

estimation and subsequent data detection. Semiblind adaptive approaches for channel

estimation have also been exploited by [57] and [58] who in addition to pilots, utilized

the finite alphabet nature of data and the second order statistics of the received signal,

respectively.

Data-aided Estimation

The purpose of channel estimation is to use that estimate to detect data. The re-

covered data, in turn, can also be used to improve the channel estimate, thus giving
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rise to an iterative technique for channel and data recovery. This idea is the basis of

joint channel estimation and data detection. This iterative technique was used in a

data-aided fashion by [39] or more rigourously by the expectation maximization (EM)

approach [68]-[73].

1.3 Overview of Contributions

1.3.1 Cyclic Prefix Based Enhanced Data Recovery in OFDM

In Chapter 2, we develop a totally blind algorithm for data detection by using the

outputs of the circular and linear channels (to be explained in Chapter 2) and we

use exhaustive search to detect the data. By using exhaustive search, we obtain a

bench mark against which other lower complexity versions of the algorithm can be

compared. Moreover, we modify the algorithm to incorporate a priori information

about the channel such as the finite delay spread and frequency correlation. We also

investigate the ability of the algorithm to deal with zeros on the FFT grid. Since the

blind algorithm uses both the linear and circular channel, it is robust to the presence

of zeros on the FFT grid even as compared with the case when the channel is perfectly

known at the receiver. In that chapter, we also propose approximate methods to reduce

the computational complexity involved in the exhaustive search. As all standard-based

OFDM systems involve some form of training, we have also studied the behavior of

the blind receiver in the presence of pilots. A new method of enhanced equalization

using cyclic prefix has also been proposed when the receiver has perfect or estimated
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knowledge of the channel. Specifically, in this method, data is recovered using both the

linear and circular subchannels as opposed to the conventional method which utilizes

only circular subchannel.

1.3.2 Utilizing Gaussian Assumption for Semiblind Channel

Estimation

In Chapter 3, we propose a receiver that is semiblind and emphasizes on channel

estimation. Cyclic prefix and Gaussian assumption on the transmitted data in an

OFDM system are used for channel estimation in this technique. The Gaussian as-

sumption on input helps to easily evaluate the pdf of output and channel is estimated

by maximizing the log likelihood function. We investigate the likelihood function by

simulations to check whether it has a global maxima by plotting it against the channel

taps. The results show that the likelihood function has more than one maxima. So,

a semiblind approach is adopted. We derive the gradient of likelihood function with

respect to the channel taps hi(1), hi(2), ..., hi(L), and then use it in the Steepest

Descent algorithm (initialized with a noisy channel estimate) to find the likelihood

function maxima.
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1.3.3 Performance of Forward-Backward Kalman Filter Based

STBC MIMO OFDM Receiver over Spatially Corre-

lated Channel

In Chapter 4, we solve a more practical problem where we design a receiver for chan-

nel estimation and data recovery for OFDM transmission over MIMO time-variant

spatially correlated channels. The receiver uses all possible constraints on the channel

(the finite delay spread, frequency and time correlation, and transmit and receive spa-

tial correlation) and the data (the finite alphabet constraint, the cyclic prefix, pilots,

and the orthogonal space time block coding (OSTBC)). Our approach is based on [96]

which proposed a Kalman filter approach to channel estimation in MIMO OFDM.

We have extended this approach to spatially correlated channels and explored the use

of forward-backward Kalman filter with different implementations (cyclic and helix).

We have also discussed the effect of using an outer code and using reduced number of

pilots on the performance of the receiver.
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CHAPTER 2

DATA-CENTERED BLIND

ESTIMATION

2.1 Introduction

In this chapter, we show how the cyclic prefix can be used to enhance the performance

of an OFDM receiver. In the first part of the chapter, we consider blind data detec-

tion for OFDM transmission over block fading channels. Specifically, we show how

an OFDM symbol can be blindly detected using output symbol and associated cyclic

prefix. Our approach relies on decomposing the OFDM channel into two subchannels

(circular and linear) that share the same input and are characterized by the same

channel parameters. This fact enables us to estimate the channel parameters from

one subchannel and substitute the estimate into the other, thus obtaining a nonlinear

relationship involving the input and output data only that can be searched for the

maximum likelihood estimate of the input. This shows that OFDM systems are com-
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pletely identifiable using output data only, irrespective of the channel zeros, as long as

the channel delay spread is less than the length of the cyclic prefix. We also propose

iterative methods to reduce the computational complexity involved in the maximum

likelihood search of input. In the second part of the chapter, we show how the cyclic

prefix can be used to enhance the operation of the channel equalizer when the channel

is known at the receiver(perfectly or through training).

2.1.1 The Approach and Organization of the Chapter

This chapter presents the improvement in the performance of the OFDM receiver

by using cyclic prefix (CP) whether operating in the blind, semiblind, training or

perfectly known channel modes.

In the first part of the chapter, we perform channel identification and equaliza-

tion from output data only (i.e. OFDM output symbol and associated cyclic prefix

(CP)), without the need for a training sequence or a priori channel information. The

advantage of our approach is three fold:

1. The method provides a blind estimate of the data from one output symbol

without the need for training or averaging (contrary to the common practice

in blind methods where averaging over several symbols is required). Thus, the

method lends itself to block fading channels.

2. Data detection is done without any restriction on the channel (as long as the

delay spread is shorter than the (CP)). In fact, data detection can be performed
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even in the presence of zeros on the FFT grid.1

3. The fact that we use two observations (the OFDM symbol and CP) to recover

the input symbol enhances the diversity of the system as can be seen from

simulations.

Our approach is based on the transformation of the OFDM channel into two par-

allel subchannels due to the presence of a cyclic prefix at the input (see Section 2.3).

One is a circular subchannel that relates the input and output OFDM symbols and

thus is free of any intersymbol interference (ISI) effects and is best described in the

frequency domain (Section 2.3.1). The other one is a linear subchannel that carries the

burden of ISI and that relates the input and output prefixes through linear convolution

(Section 2.3.2). This subchannel is best studied in the time domain.

It can be shown that the two subchannels are characterized by the same set of

parameters (or impulse response(IR)) and are driven by the same stream of data.

They only differ in the way in which they operate on the data (i.e. linear vs circular

convolution). This fact enables us in Section 2.4 to estimate the IR from one subchan-

nel and eliminate its effect from the other, thus obtaining a nonlinear least squares

relationship that involves the input and output data only. This relationship can in

turn be optimized for the ML data estimate, something that can be achieved through

exhaustive search (in the worst case scenario). The relationship takes a particularly

simple form in constant modulus case (Section 2.5).

Exhaustive search is computationally very expensive. We thus suggest in Section

1This comes contrary to the common belief that OFDM using CP cannot be equalized for channels
with zeros on the FFT grid [1] and [3]
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2.6, six approaches to reduce the computational complexity. The first approach is

based on approximating the nonlinear least squares problem with a linear one. In

the second approach, we consider the high SNR case and try to find a closed form

solution of the nonlinear least squares problem. In the third approach, we use the

Particle Swarm Optimization (PSO) [81], [82], [83], and the Genetic Algorithm (GA)

[84], [85], to directly solve the nonlinear problem. The estimate obtained by the linear

approximation approach can be used to start these search algorithms. In the fourth

approach, we propose a reduced exhaustive search algorithm. We show in our fifth

approach how the CP in addition to pilots and frequency correlation can be used to

estimate the channel in a semiblind manner. The sixth approach also describes a

semiblind algorithm in which we use Newton’s method to estimate the data when it

is initialized with an estimate using frequency correlation and less number of pilots.

In the second part of the chapter (Section 2.7), we show how the CP can be used

to enhance the operation of the equalizer when the channel is perfectly known at the

receiver or is obtained through training. Specifically, the CP observation enhances the

BER performance especially when the channel exhibits zeros on the FFT grid.

To setup the stage, we introduce our notation in the following section.

2.2 Notation

We denote scalars with small-case letters, vectors with small-case boldface letters, and

matrices with uppercase boldface letters. Calligraphic notation (e.g. X ) is reserved

for vectors in the frequency domain. The individual entries of a vector like h are
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denoted by h(l). A hat over a variable indicates an estimate of the variable (e.g., ĥ is

an estimate of h). When any of these variables become a function of time, the time

index i appears as a subscript.

Now consider a length-N vector xi. We deal with three derivatives associated with

this vector. The first two are obtained by partitioning xi into a lower (trailing) part

xi (known as the cyclic prefix) and an upper vector x̃i so that

xi =




x̃i

xi




The third derivative, xi, is created by concatenating xi with a copy of CP i.e. xi.

Thus, we have

xi =




xi

xi


 =




xi

x̃i

xi




(2.1)

In line with the above notation, a matrix Q having N rows will have the natural

partitioning

Q =




Q̃

Q


 (2.2)

where the number of rows in Q̃ and Q are understood from the context and when it
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is not clear, the number of rows will appear as a subscript.Thus, we write

Q =




Q̃N−L

Q
L


 (2.3)

2.3 System Overview

In an OFDM system, data is transmitted in symbols X i of length N each. The symbol

undergoes an IFFT operation to produce the time domain symbol xi, i.e.

xi =
√

NQX i (2.4)

where Q is the N × N IFFT matrix. When juxtaposed, these symbols result in

the sequence {xk}.2 We assume a channel h of maximum length L + 1. To avoid

ISI caused by passing through the channel, a cyclic prefix (CP) xi (of length L) is

appended to xi, resulting in super-symbol xi as defined in (2.1). The concatenation

of these symbols produces the underlying sequence {xk}. When passed through the

channel h, the sequence {xk} produces the output sequence {yk} i.e.

yk = hk ∗ xk + nk (2.5)

where nk is the additive white Gaussian noise and ∗ stands for linear convolution.

Motivated by the symbol structure of the input, it is convenient to partition the

2The time indices in the sequence xi and the underlying sequence {xk} are dummy variables.
Nevertheless, we chose to index the two sequences differently to avoid any confusion that might arise
from choosing identical indices.
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output into length N + L symbol as

yi =




y
i

yi




This is a natural way to partition the output because the prefix y
i
actually absorbs

all ISI that takes place between the adjacent symbols xi−1 and xi. Moreover, the

remaining part yi of the symbol depends on the ith input OFDM symbol xi only.

These facts can be seen from the input/output relationship




yi−1

y
i

yi




=




H

OL×N HU

ON×N ON×L

ON×L ON×N

HL OL×N

H







xi−1

x̃i−1

xi−1

xi

x̃i

xi




+




ni−1

ni

ni




(2.6)

where n is the output noise which we take to be white Gaussian. The matrices H ,

HL, and HU are convolution (Toeplitz) matrices of proper sizes created from the

vector h. Specifically, H is the N × (N + L) matrix

H =




h(L) · · · h(1) h(0)

...
. . . · · · . . . . . .

0 · · · h(L) · · · h(1) h(0)




(2.7)
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The matrices HU and HL are square of size L.3

HU =




h(L) h(L− 1) · · · h(1)

h(L) · · · h(2)

. . .
...

h(L)




(2.8)

HL =




h(0)

h(1) h(0)

...
. . . . . .

h(L− 1) · · · h(1) h(0)




(2.9)

Because of the redundancy in the input, the convolution in (2.6) can be decom-

posed into two distinct constituent convolution operations or subchannels [96]. This

decomposition is essential for channel and data recovery, which is the center of at-

tention in this chapter. In what follows, we shall describe each of these operations

separately.

3The matrix HL (HU) is lower (upper) triangular; this explains the superscript L (U).
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2.3.1 Circular Convolution (Subchannel)

From (2.6), we can write

yi = H




xi

x̃i

xi




= H xi + ni (2.10)

This shows that yi is created solely from xi through convolution and hence is ISI-free.

Moreover, the existence of a cyclic prefix in xi allows us to rewrite (2.10) as

yi = Hxi + ni (2.11)

where H is the size-N circulant matrix.

H =




h(0) 0 · · · 0 h(L) · · · h(1)

h(1) h(0) · · · 0 0 · · · h(2)

...
...

. . .
... · · · . . .

...

h(L) h(L− 1) · · · h(0) 0 · · · 0

...
. . . . . . · · · . . .

...
...

0 0 · · · h(L) h(L− 1) · · · h(0)




(2.12)

In other words, the cyclic prefix of xi renders the convolution in (2.11) cyclic, and we

can write

yi = hi◦∗xi + ni (2.13)
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where hi is a length-N zero-padded version of hi.

hi =




hi

O(N−L−1)×1




In the frequency domain, the circular convolution (2.13) reduces to the element-by-

element operation

Y i = Hi ¯X i + N i (2.14)

where ¯ stands for element-by-element multiplication and where Hi, X i, N i, and Y i,

are the DFT’s of hi, xi, ni, and yi respectively

Hi = Q∗hi, X i =
1√
N

Q∗xi, N i =
1√
N

Q∗ni, and Y i =
1√
N

Q∗yi (2.15)

Since hi corresponds to the first L + 1 elements of hi, we can show that

Hi = Q∗
L+1hi and hi = QL+1Hi (2.16)

where Q∗
L+1 consists of the first L + 1 columns of Q∗ and QL+1 consists of first L + 1

rows of Q . This allows us to rewrite (2.14) as

Y i = diag(X i)Q
∗
L+1hi + N i (2.17)

21



2.3.2 Linear Convolution (Subchannel)

From (2.5), we can also deduce that the cyclic prefixes at the input and output are

related by linear convolution. Specifically, if we concatenate all cyclic prefixes at the

input into a sequence {xk} and the cyclic prefixes at the output into the correspond-

ing sequence {y
k
}, then we can show that the two sequences are related by linear

convolution [6]

y
k

= hk ∗ xk + ni (2.18)

From this we deduce that the cyclic prefix of OFDM symbol, yi, is related to the

input cyclic prefixes xi−1 and xi by

y
i
= X ihi + ni (2.19)

where X i is constructed from xi−1 and xi according to

X i = XU i−1 + XLi (2.20)

22



and where (compare with (2.8))

XUi−1 =




0 xi−1(L− 1) · · · xi−1(0)

0 0 · · · xi−1(1)

...
. . . . . .

...

0 · · · 0 xi−1(L− 1)




, (2.21)

and XLi =




xi(0) 0 · · · 0

xi(1) xi(0) · · · 0

...
. . . . . .

...

xi(L− 1) · · · xi(0) 0




(2.22)

This fact together with the FFT relationship (2.16) yields the time-frequency in-

put/output equation

y
i
= X iQL+1Hi + ni (2.23)

2.4 Maximum-Likelihood Estimation

Consider the frequency domain description of the circular subchannel (2.14)

Y i = Hi ¯X i + N i
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To obtain the maximum-likelihood (ML) estimate of Hi, we assume that the sequence

X i is deterministic and perform an element-by-element division of (2.14) by X i to get

D−1
X Y i = Hi + D−1

X N i (2.24)

where

DX = diag(X i) (2.25)

Equivalently, we can write (2.24) as

D−1
X Y i = Hi + N ′

i (2.26)

where N ′
i is Gaussian distributed with zero mean and autocorrelation matrix

Rn′ = σ2
nD−1

X D−∗
X = σ2

n|DX |−2 (2.27)

The maximum-likelihood estimate of H can now be obtained by solving the system

of equations (2.24) in the least-squares (LS) sense subject to the constraint

Q̃N−L−1Hi
∆
= Q̃Hi = 0 (2.28)
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We can show that the ML estimate is given by [92]

ĤML

i =

[
I −Rn′Q̃

∗ (
Q̃Rn′Q̃

∗)−1

Q̃

]
D−1
X Y i

=

[
I − |DX |−2Q̃

∗ (
Q̃|DX |−2Q̃

∗)−1

Q̃

]
D−1
X Y i

(2.29)

The ML estimate (2.29) was obtained solely from the circular convolution subchannel.

Upon replacing Hi that appears in the time-frequency input/output equation (2.23)

(corresponding to the linear subchannel)

y
i
= X iQL+1H + ni

with its ML estimate (2.29), we obtain

y
i
= X iQL+1

[
I − |DX |−2Q̃

∗ (
Q̃|DX |−2Q̃

∗)−1

Q̃

]
D−1
X Y i + ni (2.30)

This is an input/output relationship that does not depend on any channel information

whatsoever. Since the data is assumed deterministic, maximum-likelihood estimation

is the optimum way to detect it, i.e. we minimize

X̂ ML

i = arg minX i

∥∥∥∥y
i
−X iQL+1

[
I − |DX |−2Q̃

∗ (
Q̃|DX |−2Q̃

∗)−1

Q̃

]
D−1
X Y i

∥∥∥∥
2

(2.31)

This is a nonlinear least-squares problem in the data. In the worst case scenario, it

can be solved by an exhaustive search over all possible sequences X i.

To gain more insight into this problem, we now treat the case of constant modulus

25



data which leads to more explicit results.

2.5 ML Estimation in the Constant Modulus Case

In the constant modulus case, we have

|DX |−2 =
1

EX

I (2.32)

As a consequence, we can also write

D−1
X =

1

EX

D∗
X (2.33)

Thus, the ML estimate of Hi (2.29) simplifies to

ĤML

i =
1

EX

[
I − Q̃

∗ (
Q̃Q̃

∗)−1

Q̃

]
DX ∗Y i (2.34)

=
1

EX

[
I − Q̃

∗
Q̃

]
Y i ¯X ∗

i (2.35)

where in (2.35), we used the fact that Q̃ is a left-inverse of Q̃
∗

- a consequence of the

unitary nature of Q

I = QQ∗ =




QL+1

Q̃N−L−1




[
Q∗

L+1 Q̃
∗
N−L−1

]
(2.36)
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Just as we did in the general case, we now replace the effect of Hi in the linear

convolution channel, as expressed in (2.23), by its ML estimate to get

y
i

=
1

EX

X iQL+1

[
I − Q̃

∗
Q̃

]
Y i ¯X ∗

i + ni (2.37)

=
1

EX

X iQL+1
Y i ¯X ∗

i + ni (2.38)

where in going to (2.38), we used the fact that

QL+1Q̃ = QL+1Q̃N−L−1 = 0

which can be deduced from (2.36). The ML estimate of X i is now obtained by

performing the minimization

X̂ ML

i = arg minX i

∥∥∥y
i
− 1

EX
X iQL+1

Y i ¯X ∗
i

∥∥∥
2

(2.39)

Notice that the only unknowns in this minimization are X i and X i, i.e. the input

data sequence. This minimization is nothing but a nonlinear least-squares problem

in the data. In the worst case scenario, we can obtain the ML estimate through an

exhaustive search.
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2.6 Approximate Methods to Reduce Computa-

tional Complexity

The search for the optimal X i in (2.39) is computationally very complex. In the

following, we describe six approaches to reduce this complexity:

2.6.1 Linearization Approach

One way to reduce the computational complexity is to transform the nonlinear into

a linear least squares problem. To do so, note first that the X i involved in equation

(2.39) is composed of an upper and lower triangle formed by the CP of previous

(known) and current (unknown) symbol respectively as shown in equation (2.20), i.e.

X i = XUi−1 + XLi

Thus equation (2.39) can be rewritten as

X̂ ML

i = arg min
X i

∥∥∥∥y
i
− 1

EX

(
XUi−1 + XLi

)
QL+1DYX ∗

i

∥∥∥∥
2

= arg min
X i

∥∥∥y
i
− (

XUi−1 + XLi

)
AX ∗

i

∥∥∥
2

= arg min
X i

∥∥∥y
i
−BX ∗

i −CX ∗
i

∥∥∥
2

(2.40)

where

A =
1

EX

QL+1DY , B = XUi−1A
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and hence are completely known and where

C = XLiA (2.41)

Thus, the elements of C are linear in the input X i making CX ∗
i quadratic in X i. In

fact, each element of c = CX ∗
i can be written as

c(j) = ‖X i‖2

W j

∆
= X ∗

i W jX i (2.42)

for some weighted matrix W j that is independent from input X i. Thus, the nonlinear

minimizing problem can be written as

X̂ ML

i = arg min
X i

∥∥∥y
i
−BX ∗

i − c
∥∥∥

2

(2.43)

The linear approximation is obtained by replacing the matrix W j by its diagonal, i.e.

c (j) = ‖X i‖2

W j
1 ≤ j ≤ L

' ‖X i‖2

diag(W j)

= EX trace (W j)

= z (j) (2.44)

where the third line follows from the fact that the elements of X i have constant

modulus. The input dependent vector c is thus replaced by the constant vector z,
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and the objective function becomes linear in X i

arg minX i

∥∥∥
(
y

i
− z

)
−BX ∗

i

∥∥∥
2

(2.45)

One way to solve equation (2.45) is by using least squares

X̂ ∗
i = (B∗B + δI)−1B∗

(
y

i
− z

)
(2.46)

where δ is a small constant.4

We could refine the estimate obtained in (2.46) further by using the estimate X̂ ∗
i

to obtain the vector c in (2.43) (as opposed to the vector z which is obtained by

approximating W j with its diagonal). We now solve the alternative least squares

problem

arg min
X i

∥∥∥
(
y

i
− c

)
−BX ∗

i

∥∥∥
2

(2.47)

This procedure of refining the estimate c and solving the least squares (2.47) could

be repeated for a desired number of iterations.

2.6.2 ML Estimation at High SNR

In this section, we try to find a closed form solution of the non-linear problem (equation

(2.39)) at high SNR by assuming noise to be zero. At high SNR, equation (2.43)

4The optimum choice for δ is EX as Cov [X i] = EXI.
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reduces to

y
i
−BX ∗

i − c = 0 (2.48)

This involves solving L equations but let us consider one equation which can be given

as

y
k
−X H

i bk − ‖X i‖2

W k
= 0 (2.49)

where y
k

is the kth element of y
i
and bk is the kth column of BT . Taking Hermitian

transpose of both sides, we get

y
k

∗ − bH
k X i − ‖X i‖2

W H

k

= 0 (2.50)

Adding equations (2.49) and (2.50)

Rk = 2Re(y
k
)− bH

k X i −X H
i bk − ‖X i‖2

(W k+W H

k )
(2.51)

Let α and β be such that

α + β = 2Re(y
k
)
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Then

Rk = α− bH
k X i −X H

i bk + ‖X i‖2

( β
EXN

IN−W k−W H

k )
(2.52)

where we used the fact that

β = ‖X i‖2
β

EXN
IN

By completing squares [89], we get

Rk = (X i −E−1bk)
HE(X i −E−1bk) + bH

k E−1bk + α (2.53)

where

E = (
β

EXN
IN −W k −W H

k )

To make equation (2.53) a perfect square, α should satisfy the following relation

bH
k E−1bk − α = 0

bH
k E−1bk = α

bH
k (

β

EXN
IN −W k −W H

k )
−1

bk = 2Re(y
k
)− β (2.54)
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The above equation can be solved for β as it is the only variable unknown. Thus

equation (2.53) can now be given as

Rk = (X i −E−1bk)
HE(X i −E−1bk)

Rk =
∥∥(X i −E−1bk)

∥∥2
(2.55)

Now, we have L such quadratic terms and their sum is given by [89]

L∑

k=1

Rk = (X i −mc)Σ
−1
c (X i −mc) (2.56)

where

Σ−1
c = E1 + E2 + · · ·+ EL

and mc = Σc(b1 + b2 + · · ·+ bL)

= (E1 + E2 + · · ·+ EL)−1(b1 + b2 + · · ·+ bL)

Thus mc would be our required solution. The problem in this method lies in the fact

that in finding β from equation (2.54), we again end up with exhaustive search as

there will be N + 1 solutions.

2.6.3 Using Search Algorithms

We can use the search algorithms like Particle Swarm Optimization (PSO) [81], [82],

[83], and the Genetic Algorithm (GA) [84], [85], to directly solve the nonlinear prob-
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lem (equation (2.39)). PSO and GA are widely used algorithms to solve nonlinear

problems. PSO and GA are motivated by the evolution of nature. Depending on the

number of variables in the problem, a population of individuals is generated. The

rule of survival of the fittest is used to manipulate the population by cooperation and

competition within the individuals in case of PSO, and by using genetic operators

like mutation, crossover and reproduction in case of GA. The best solution is selected

from the generations.

The data estimated by using the linearization approach above can be used to

initialize PSO or GA. This initialization, with close to optimal solution, will help to

kick start them for better results.

2.6.4 Reduced Exhaustive Search Algorithm

An alternative approach to blind data detection is to pursue an iterative data detec-

tion/channel estimation approach. Since the channel is of (maximum) length L + 1,

we only need L + 1 data symbols to perform channel estimation. Given the N data

symbols, which L + 1 symbols should we look for? To decide on this, consider the

estimate (2.40) reproduced here for convenience

X̂ ML

i = arg minX i

∥∥∥y
i
−BX ∗

i −CX ∗
i

∥∥∥
2

= arg min
X i

∥∥∥y
i
−BX ∗

i − c
∥∥∥

2

= arg min
X i

∥∥∥
(
y

i
− z

)
−BX ∗

i − c
∥∥∥

2

(2.57)
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where z is defined in (2.44) and where

c(j) = ‖X i‖2

W j
(2.58)

where W j is W j with all zero diagonal.

The L + 1 data symbols we should look for are the most significant symbols.

This is determined by the symbols interacting with the largest coefficients in (2.57).

Specifically, define

b = vec(B) and wi = vec(W i) 1 ≤ i ≤ L (2.59)

and find the largest element in these L + 1 vectors. This largest element interacts

with at most two data symbols. Retain this one or two symbols and all coefficients

in B and W i that operate on this symbol (or symbols). Now, find the next largest

element in (2.59) and determine the data symbols (mostly two) that interact with this

coefficient. With this procedure, (2.57) is approximated with an optimization that

looks for the most significant L + 1 data symbols by exhaustive search.

These L + 1 symbols of X i are then used to estimate the channel hi using the

following input/output equation

YL+1 = diag(X L+1)Q
∗
L+1hi + N i (2.60)

where X L+1 are the L + 1 elements detected using the above method and YL+1 are

the L + 1 elements of Y corresponding to X L+1.
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This complete procedure of data detection and channel estimation is then repeated

for a desired number of iterations.

2.6.5 Using Pilots and Frequency Correlation

The channel estimate obtained in the previous subsection can be further improved in

the presence of pilots and/or frequency correlation about the channel. Thus let R be

the channel correlation matrix and let

Yp = diag(X p)Q
∗
L+1hi + N p (2.61)

be a subsystem of (2.17) corresponding to the pilot locations. Then (2.60) and (2.61)

can be concatenated into a single system of equations and the channel hi can be

obtained by solving the regularized least squares problem

ĥi = arg min
hi

∥∥∥∥∥∥∥∥∥




YL+1

Yp


−




diag(X L+1)

diag(X p)


Q∗

L+1

∥∥∥∥∥∥∥∥∥

2

σ−2
n I

+ ‖hi‖2

R−1 (2.62)

2.6.6 Using Newton’s Method

Let

Z =
∥∥∥y

i
−BX ∗

i −CX ∗
i

∥∥∥
2

subject to |X i|2 = 1 (2.63)
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be the cost function to be minimized. If initial estimate of data X−1 is available, then

it can be refined by applying Newton’s Method [92] given by

X k = X k−1 − µ
[∇2Z(X k−1)

]−1
[∇Z(X k−1)]

∗ , k ≥ 0 (2.64)

where µ (called step size) is a small number, ∇ stands for gradient, and ∇2 stands

for hessian of cost function Z subjected to the constant modulus constraint. The

algorithm runs iteratively till a maximum number of iterations or a stopping criteria

is reached. To implement Newton’s method, we need to calculate gradient and hessian

of the cost function.

Evaluating the Gradient

We evaluate the gradient of cost function and the constant modulus constraint on

data separately.

Gradient of Cost Function The cost function Z can be written as

Z =
∥∥∥y

i
−BX ∗

i −CX ∗
i

∥∥∥
2

=
∥∥∥y

i
−BX ∗

i − c
∥∥∥

2

= ‖a‖2

= aHa (2.65)

To find the gradient of Z, we have to differentiate it with X ∗
i [86] (we consider X ∗

i
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a row vector while differentiation)

∂Z

∂X ∗
i

=
∂

[
aHa

]

∂X ∗
i

=

[
∂(aHa)

∂a

] [
∂a

∂X ∗
i

]
+

[
∂(aHa)

∂a∗

] [
∂a∗

∂X ∗
i

]

= aH

[
∂a

∂X ∗
i

]
+ aT

[
∂a∗

∂X ∗
i

]
(2.66)

where the second line follows from the chain rule for complex matrices [86], given by

∂Z

∂X ∗
i

=

[
∂Z

∂a

] [
∂a

∂X ∗
i

]
+

[
∂Z

∂a∗

] [
∂a∗

∂X ∗
i

]

Now, as can be seen from equation (2.66), we need to find differential of a and a∗

w.r.t X ∗
i

∂a

∂X ∗
i

=
∂

[
y

i
−BX ∗

i − c
]

∂X ∗
i

=
∂y

i

∂X ∗
i

− ∂(BX ∗
i )

∂X ∗
i

− ∂

∂X ∗
i




X T
i W 1X ∗

i

X T
i W 2X ∗

i

...

X T
i W LX ∗

i




= −B −




X T
i W 1

X T
i W 2

...

X T
i W L




(2.67)
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and

∂a∗

∂X ∗
i

=
∂

[
y

i
∗ −B∗X i − c∗

]

∂X ∗
i

=
∂y∗

i

∂X ∗
i

− ∂(B∗X i)

∂X ∗
i

− ∂

∂X ∗
i




X H
i W ∗

1X i

X H
i W ∗

2X i

...

X H
i W ∗

LX i




= −




X T
i W H

1

X T
i W H

2

...

X T
i W H

L




(2.68)

Substituting these values in equation (2.66), we get

∂Z

∂X ∗
i

= aH




−B −




X T
i W 1

X T
i W 2

...

X T
i W L







+ aT




−




X T
i W H

1

X T
i W H

2

...

X T
i W H

L







= −aHB − aH




X T
i W 1

X T
i W 2

...

X T
i W L




− aT




X T
i W H

1

X T
i W H

2

...

X T
i W H

L




(2.69)

which is a vector of size 1×N .
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Gradient of Constraint The constant modulus constraint on data can be written

as

Ψ =
∥∥EX −X H

i EiX i

∥∥2
(2.70)

where Ei is a N ×N matrix given by

E1 =




1 0 · · · 0

0 0 · · · 0

...
...

. . .
...

0 0 · · · 0




, E2 =




0 0 · · · 0

0 1 · · · 0

...
...

. . .
...

0 0 · · · 0




, · · · , EN =




0 0 · · · 0

0 0 · · · 0

...
...

. . .
...

0 0 · · · 1




Equation (2.70) can also be written as

Ψ =
∥∥EX −X H

i EiX i

∥∥2

= ‖b‖2

= bHb (2.71)
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which is similar to equation (2.65). So, the gradient of constant modulus constraint

is calculated similar to the cost function and is given as

∂Ψ

∂X ∗
i

= −bH




X T
i ET

1

X T
i ET

2

...

X T
i ET

N




− bT




X T
i E∗

1

X T
i E∗

2

...

X T
i E∗

N




(2.72)

which is a vector of size 1×N .

So, the gradient of cost function subjected to the constraint is given by

∇(Z) =
∂Z

∂X ∗
i

+
1

σ2
n

∂Ψ

∂X ∗
i

(2.73)

Evaluating the Hessian

Similar to gradient, we evaluate the hessian of cost function and constraint separately.

Hessian of Cost Function The Hessian of cost function is given by

∂

∂X i

(
∂Z

∂X ∗
i

)T

=
∂

∂X i




−aHB − aH




X T
i W 1

X T
i W 2

...

X T
i W L




− aT




X T
i W H

1

X T
i W H

2

...

X T
i W H

L







T
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which can be expanded to get the following

∂

∂X i

(
∂Z

∂X ∗
i

)T

= − ∂

∂X i

(
BT a∗

)

− ∂

∂X i

([
W T

1 X i · · · W T
LX i

]
a∗

)

− ∂

∂X i

([
W ∗

1X i · · · W ∗
LX i

]
a

)
(2.74)

Now, we apply chain rule of complex matrices (explained in the previous section) to

each term of equation (2.74). The final result obtained is given by

∂

∂X i

(
∂Z

∂X ∗
i

)T

= − BT




−B∗ −




X H
i W ∗

1

X H
i W ∗

2

...

X H
i W ∗

L







−
[

W T
1 X i · · · W T

LX i

]




−B∗ −




X H
i W ∗

1

X H
i W ∗

2

...

X H
i W ∗

L







−
[

W ∗
1X i · · · W ∗

LX i

]




X H
i W T

1

X H
i W T

2

...

X H
i W T

L




(2.75)
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which is a matrix of size N ×N .

Hessian of Constraint The Hessian of constant modulus constraint on data is

calculated in a similar fashion to cost function and the final result is given as under

∂

∂X i

(
∂Ψ

∂X ∗
i

)T

=

[
E1X i · · · ENX i

]




X H
i EH

1

X H
i EH

2

...

X H
i EH

N




+

[
EH

1 X i · · · EH
NX i

]




X H
i E1

X H
i E2

...

X H
i EN




(2.76)

which is also a matrix of size N ×N .

Thus, the Hessian of the cost function subjected to the constant modulus constraint

on data is given by

∇2(Z) =
∂

∂X i

(
∂Z

∂X ∗
i

)T

+
1

σ2
n

∂

∂X i

(
∂Ψ

∂X ∗
i

)T

(2.77)
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2.7 Enhanced Equalization Using CP

We have so far seen how the CP can be used for blind data detection. This can aid

with reducing the training overhead and dealing with the presence of channel zeros on

the FFT grid. However, can the CP be of value when the channel is known perfectly

or an estimate of it is available at the receiver?

We show in this section how this is possible. To this end, consider the input/output

equations of the circular and linear subchannels ((2.14) and (2.19)), reproduced here

for convenience

Y i = Hi ¯X i + N i = diag(Hi)X i + N i (2.78)

y
i

= X ihi + ni (2.79)

Now, decompose X i as
(
XU i−1 + XLi

)
and move the known part XU i−1hi to the left

hand side to get

y
i
−XU i−1hi = XLihi + ni (2.80)

and exchange the roles of XLihi as

XLihi = HLxi (2.81)

= HLQN−L+1X i (2.82)
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where the second line follows from the fact that

xi = QX i

and that xi consists of the last L + 1 elements of xi. Thus (2.80) can be rewritten as

y
i
−XU i−1hi = HLQN−L+1X i + ni (2.83)

Combining (2.78) and (2.83) yields an N + L system of equations in the unknown

OFDM symbol X i




Y i

y
i
−XU i−1hi


 =




diag(Hi)

HLQN−L+1


 X i +




N i

ni


 (2.84)

This system can be solved for X i using least squares.

2.8 Simulation Results

This section is divided into two parts. In the first part, simulation results of the blind

data detector and the approximate methods are discussed while in the second part,

we provide results for the enhanced equalization using CP.

2.8.1 Blind Data Detector

We consider an OFDM system with N = 16 and cyclic prefix of length L = 4. The

OFDM symbol consists of BPSK or 4-QAM symbols. The channel IR consists of 5 iid
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Rayleigh fading taps which remains constant over one OFDM symbol. We compare

the BER performance of three methods: (i) Perfectly known channel, (ii) Channel

estimated using L + 1 pilots and (iii) Blind based estimation using exhaustive search

of equation (2.39). In all the following cases, we assume that we know the previous

symbol unless mentioned otherwise.

BER vs SNR comparison for BPSK modulated data
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Semiblind using 2 pilots and corr.
Channel estimated using pilots
Perfectly known channel

Figure 2.1: BER vs SNR for BPSK-OFDM over a Rayleigh channel

In Figure 2.1, we compare the three mentioned approaches, a semiblind least

squares estimator using few pilots and frequency correlation, and an approach with

no channel estimation, for BPSK modulated data over a Rayleigh fading channel. As

expected, the best performance is achieved by the perfectly known channel, followed

by that obtained by training based estimated channel. The approach with no channel
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estimation appears to be flat at BER = 0.5 as the data is convolved with channel IR

and detection is transformed to guessing without channel equalization. The semiblind

approach performs better than the proposed blind approach at low SNR. Note how-

ever that in the high SNR region, the BER curve of blind based estimation exhibits

steeper slope (higher diversity) which can be explained from the fact that the two

subchannels (linear and circular) are used to detect the data in the blind case when

only the linear subchannel is used in the pilot based and known channel cases. The

presence of occasional nulls in the channel also makes the blind channel case better.

BER vs SNR comparison for 4-QAM modulated data

The same conclusion can be made for the 4-QAM input (see Figure 2.2). Here it can

also be seen that the blind based estimation outperforms the pilot based and perfectly

known channel cases at high SNR.

BER vs SNR comparison for BPSK modulated data with persistent channel

nulls

In Figure 2.3, the three approaches are compared for BPSK modulated data when the

channel IR has persistent zeros on the FFT grid. We note that at high SNR, the BER

for perfectly known channel and that of the estimated channel reach an error floor.

Our blind method does not suffer from this problem and thus blind case outperforms

the other two cases when the channel has persistent nulls.
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Figure 2.2: BER vs SNR for 4QAM-OFDM over a Rayleigh channel
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Figure 2.3: BER vs SNR for BPSK-OFDM over channel with zeros on FFT grid

48



−15 −10 −5 0 5 10 15 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 SNR in dB

 B
E

R

 

 

Blind
Channel estimated using pilots
Perfectly known channel

Figure 2.4: BER vs SNR for BPSK-OFDM over constant channel

BER vs SNR comparison for BPSK modulated data over a constant chan-

nel

To check whether occasional nulls are encountered in the Rayleigh channel, we compare

the performance of the blind algorithm with the pilot based and perfectly known

channel methods when the channel is constant with no zeros on FFT grid. Figure

2.4 indicates that when the channel is constant, the blind algorithm does not perform

better than the pilot based or perfectly known channel methods even at high SNR.

This proves that occasional nulls are present in the Rayleigh channel. The blind

algorithm presented here is robust to channel nulls and thus outperforms even the

perfectly known channel method in the practical scenario of random channel.
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Figure 2.5: BER vs SNR for BPSK-OFDM with previous symbol assumed to be zero

BER vs SNR comparison for BPSK modulated data with previous symbol

assumed to be zero

In Figure 2.5, contrary to the above cases, we assume the previous symbol to be

zero and use the blind algorithm to detect the current symbol. The problem of sign

ambiguity is faced in this scenario and we tackle it by assuming the first bit of current

symbol to be known. This can be done by sending a pilot on the first bit of each

symbol. Figure 2.5 clearly shows that the blind algorithm performs quite well in this

scenario also.

Comparison of linearization approach and search algorithms

The low complexity algorithms proposed in Subsections 2.6.1 and 2.6.3 (linearization

approach, PSO and GA) have been compared in Figure 2.6 for BPSK modulated data.
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Figure 2.6: Comparison of low complexity algorithms for BPSK-OFDM over a Rayleigh
channel

In the linearization approach, the estimate was refined for 1000 number of iterations.

In GA, size of population used was 200 while the number of generations was fixed

at 250. The algorithm was initialized by the estimate obtained from linearization

approach. As the data is BPSK modulated, so minimization was performed subject

to the constraint |X i| = 1. In PSO, the population size used was 300 and the particles

were also initialized with the data estimated from linearization approach. We can

observe in Figure 2.6 that PSO performs well at low SNR while GA performs quite

close to the blind exhaustive search at low as well as high SNR.

Sensitivity of Reduced exhaustive search algorithm to number of iterations

The sensitivity of reduced (L + 1) exhaustive search algorithms described in Subsec-

tions 2.6.4 and 2.6.5 to number of iterations is shown in Figure 2.7. Two pilots were
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Figure 2.7: Sensitivity of Reduced search algorithms to number of iterations for BPSK-
OFDM over a Rayleigh channel

used while the number of iterations were varied from 1 to 3. It can be observed that

the first iteration yields substantial improvement in BER but iterating beyond that

yields diminishing returns.

BER vs SNR Comparison of Reduced exhaustive search algorithms

In Figure 2.8, three variants of the reduced (L + 1) exhaustive search algorithm (dis-

cussed in Subsections 2.6.4 and 2.6.5) have been compared with the N exhaustive

search algorithm of equation (2.39). The three variants include: (i) L + 1 exhaustive

search , (ii) L+1 exhaustive search with pilots only, and (iii) L+1 exhaustive search

with both pilots and frequency correlation. The results are shown for two iterations

and the number of pilots is also fixed at two. Figure 2.8 shows that L + 1 exhaustive

search algorithm performs quite close to the N exhaustive search blind algorithm. We
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Figure 2.8: Comparison of Reduced search algorithms for BPSK-OFDM over a Rayleigh
channel

can also notice that the reduced exhaustive search with pilots and frequency correla-

tion performs better than the blind one as we are utilizing pilots and thus trading off

with bandwidth efficiency.

BER vs SNR Comparison of Newton’s Method

The Newton’s method described in equation (2.64) was implemented using a step size

of 0.5. The iterative algorithm was run till the difference between the value of current

and previous cost function becomes less than 10−6. Figure 2.9 shows the performance

of Newton’s method for 4-QAM with N = 16 and L = 4 when it is initialized by the

estimate obtained by using 3 pilots and channel correlation. It can be seen that the

3 pilots based method reaches an error floor at high SNR while the Newton’s method

performs quite close to the blind exhaustive search. In Figure 2.10, the performance of
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Figure 2.9: Comparison of Newton’s Method for 4QAM-OFDM with N = 16 and L = 4
over a Rayleigh channel

Newton’s method is compared with the L+1 pilots case and perfectly known channel

for a comparatively more realistic OFDM system using 4-QAM with N = 64 and

L = 16. The Newton’s method is initialized with an estimate obtained by using 12

pilots and channel correlation. Figure 2.10 clearly indicates that Newton’s method

performs quite well even for higher number of carriers.

2.8.2 Enhanced Equalization Using CP

We consider a realistic OFDM system with N = 128 and cyclic prefix of length

L = 32. The channel IR consists of 33 iid Rayleigh fading taps and the OFDM

symbol consists of BPSK or 16QAM modulated data. In this section, we assume

that the receiver either knows the channel perfectly or estimates it using L + 1 pilots.

We then compare the performance of the receiver in these two scenarios when (i)
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Figure 2.10: Comparison of Newton’s Method for 4QAM-OFDM with N = 64 and L = 16
over a Rayleigh channel

data is detected using only the circular subchannel, (ii) data is detected using both

the circular and linear subchannels with errors propagated (i.e. the error corrupted

symbol detected in the current iteration is used as it is in the next iteration), and (iii)

data is detected using both the channels with no errors propagated (i.e. we assume

that we have detected the previous symbol perfectly in the next iterations).

BER vs SNR Comparison for BPSK-OFDM over a Rayleigh channel

In Figure 2.11, the performance of the receiver is compared for the above scenarios

for BPSK-OFDM over a Rayleigh channel. It can be seen that the performance

of the receiver improves when both subchannels are used for data recovery. The

improvement is quite significant at high SNR. It can also be noticed that the case when

errors are propagated does not perform well at low SNR but as the SNR increases, its
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performance is improved and becomes equal to the case when no errors are propagated.
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Figure 2.11: Comparison of perfect and pilot based estimation with enhanced equalization
using CP for BPSK-OFDM over a Rayleigh channel

BER vs SNR Comparison for BPSK-OFDM over channel with persistent

nulls

In Figure 2.12, the performance of the receiver with enhanced equalization using CP

is compared with the conventional one using only circular subchannel when channel

IR has zeros on FFT grid. It can be observed that the case when data is estimated

using only circular subchannel reaches an error floor as expected. No such error floor

is observed if both the linear and circular subchannels are used for data detection.

As noticed in Figure 2.11, the performance of the case when errors are propagated

improves with increasing SNR.
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Figure 2.12: Comparison of perfect and pilot based estimation with enhanced equalization
using CP for BPSK-OFDM over channel with zeros on FFT grid

BER vs SNR Comparison for 16QAM-OFDM over a Rayleigh channel

Figure 2.13 shows the performance of the receiver with enhanced equalization using

CP for 16QAM modulated (non-constant modulus) data over a Rayleigh channel.

Similar to the BPSK modulated data case, the performance of the receiver when

both subchannels are considered is better as compared to its performance when only

circular subchannel is used for data recovery. The improvement is quite significant at

high SNR.
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Figure 2.13: Comparison of perfect and pilot based estimation with enhanced equalization
using CP for 16QAM-OFDM over a Rayleigh channel

BER vs SNR Comparison for 16QAM-OFDM over channel with persistent

nulls

The performance of the receiver using the enhanced equalization using CP for 16QAM

modulated data is shown in Figure 2.14. The case when only circular subchannel is

used for data recovery flattens at high SNR while the case when both subchannel are

used does not show any error floor.

2.9 Conclusion

In this chapter, we demonstrated how to perform blind ML data recovery in OFDM

transmission. This is done using a single output OFDM symbol and associated CP.

In particular, it was shown that the ML data estimate is the solution of an integer
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Figure 2.14: Comparison of perfect and pilot based estimation with enhanced equalization
using CP for 16QAM-OFDM over channel with zeros on FFT grid

nonlinear-least squares problem which becomes simpler in the case of constant modu-

lus data. We further proved that the data recovery is possible from output data only,

irrespective of the channel zero locations and irrespective of the quality of the channel

estimates or of its exact order.

We have also proposed approximate methods to reduce the exponential complexity

entailed in the algorithm developed in the chapter. As is evident from the simula-

tion results, these approximate methods perform quite close to the exhaustive search

method especially at low SNR values. As all standard-based OFDM systems involve

some form of training, we have also studied the behavior of the blind receiver in the

presence of pilots and channel frequency correlation. It was found that Newton’s

method performs quite well at all values of SNR even for higher number of carriers.

A new method of enhanced equalization using CP was also proposed when the
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receiver has perfect or estimated knowledge of channel. Specifically, in this method,

data is recovered using both the linear and circular subchannels as opposed to the con-

ventional method which utilized only circular subchannel. Simulation results proved

that the proposed method performs better than the conventional one especially at

high SNR values and when channel has zeros on FFT grid.
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CHAPTER 3

CHANNEL-CENTERED BLIND

ESTIMATION

3.1 Introduction

As opposed to the data-centric approach of Chapter 2, we adopt in this chapter a

channel-centric approach for (semi) blind channel estimation and data detection in

OFDM systems. In other words, we start by estimating channel and use it to estimate

the data. The channel estimate is obtained by maximizing the log likelihood of the

channel given the output data. Finding the likelihood function of a linear system

can be very difficult. However, in the OFDM case, central limit arguments can be

used to argue that the input is Gaussian [60]. Under the assumption that the noise

is Gaussian, this makes the output Gaussian and allows us to easily write down the

likelihood expression of the output. The likelihood function can then be maximized

to obtain the ML estimate of the channel.
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3.1.1 The Approach and Organization of the Chapter

We start by giving an overview of the system in Section 3.2. The log likelihood function

is derived in Section 3.3 by using the Gaussian assumption on transmitted data. The

channel can be estimated by maximizing the likelihood function. For blind estimation,

the likelihood function should have global maxima when it is plotted against the

channel taps. Experimental results of log likelihood function plot against channel

taps are discussed in Section 3.3.2 which show that it is not unimodal. So channel

cannot be estimated blindly and thus a semiblind approach is proposed by using

steepest descent algorithm. This algorithm involves gradient of likelihood function

with respect to channel taps. It is evaluated in Section 3.4 followed by the description

of steepest descent algorithm in Section 3.5. The issue of computational complexity

is discussed in Section 3.6 and simulation results are presented in Section 3.7.

3.2 System Overview

The OFDM system used here is similar to the previous chapter. Data is transmitted

in symbols X i of length N each which undergo an IFFT operation to produce the time

domain symbol, xi. A cyclic prefix of length L is appended to form the super-symbol

xi as defined in equation (2.1) in the previous chapter. We assume an FIR channel of

maximum length L + 1 given by

h =

[
h0 h1 · · · hL

]
(3.1)
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For reasons to be explained shortly, we will focus in this chapter on time domain

signals. Here, the input/output relationship is given by




y
i

yi


 =




hL hL−1 hL−2 · · · h0 0 · · · 0

0 hL hL−1 · · · h1 h0 · · · 0

. . . . . . . . . . . .

0 0 0 · · · hL−1 hL−2 · · · h0







xi−1

xi

x̃i

xi




+




ni

ni




or in matrix form

Y = HX + N (3.2)

where n is the output noise which we take to be white Gaussian. The matrices Y ,H

and X are of size (N + L)× 1, (N + L)× (N + 2L) and (N + 2L)× 1, respectively.

3.3 Evaluating the Log Likelihood Function

To derive the likelihood function of a the output of a linear system, the input is

assumed usually to be Gaussian (otherwise writing down the likelihood function can

be very difficult). This is usually not true in a data communication system as the

input is generated from a finite alphabet. Fortunately in an OFDM system, the time

domain input can be assumed to be Gaussian by central limit theorem arguments.
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Specifically, from the FFT relationship

xi =
√

NQX i

we have the element by element relationship,

xi(1) =
√

Nq1X i , xi(2) =
√

Nq2X i ... xi(N) =
√

NqNX i (3.3)

where qj are the rows of Q. In other words, this shows that xi(j) is a large (weighted)

sum of iid random variables. The validity of this assumption is evident from the

histogram plot shown in Figure 3.1 which describes the distribution of the transmitted

data xi.
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Figure 3.1: Number of samples vs transmitted data (xi)

Thus from this and the fact that noise is also Gaussian, we can conclude that
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output Y will also be Gaussian with pdf

Y ∼ N (0,ΣY)

where ΣY is the second order moment of Y which (from equation (3.2)) is given by

ΣY = E [HXX∗H∗] + σ2
nI (3.4)

= HΣXH∗ + σ2
nI (3.5)

where ΣX is a matrix of size (N + 2L)× (N + 2L) given by

ΣX = E[XXH ]

= E




xi−1

xi

x̃i

xi




[
xH

i−1 xH
i x̃H

i xH
i

]

=




IL 0 0 0

0 IL 0 IL

0 0 IN−L 0

0 IL 0 IL




(3.6)

The pdf of output Y can thus be written as

P (Y |h) =
1

det(ΣY)
exp(−Y TΣY

−1Y ) (3.7)
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So, the log likelihood function is given by

L(Y |h) = − ln det (ΣY) − Y TΣY
−1Y (3.8)

3.3.1 Maximum Likelihood Estimation of the Channel IR

We can use the likelihood function derived above to obtain the ML estimate of the

channel h by maximizing it. i.e.

ĥML = max
h

L

= max
h

− ln det (ΣY) − Y TΣY
−1Y (3.9)

which depends only on the output data Y and the channel h (through the dependance

of ΣY on h).

This approach for channel estimation using the Gaussian input assumption is quite

common in single carrier case, but has not been applied in the OFDM case. There

are two disadvantages of applying it in the single carrier case [90], [91]:

• The method assumes that the input is Gaussian which is not the case in a single

carrier system.

• Even if input is Gaussian, this method is usually phase blind i.e. it can only be

used to identify minimum phase systems.

We avoid both of the problems in the OFDM case as the input is Gaussian by cen-

tral limit theorem arguments and as the input is cyclostationary (due to the presence
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of the cyclic prefix)[25].

Unfortunately, as we shall show next, the likelihood function is not unimodal (it

could have local maxima) and so finding he global maxima might be challenging.

3.3.2 Plots of Likelihood Function vs Channel Taps

The likelihood function is plotted against the channel taps to investigate whether it

has a global maxima. The input data is considered to be Gaussian of length N = 64

and a cyclic prefix of length L = 2 is used. Channel is considered to be an FIR of

length L + 1 = 3 with first tap fixed at 1 to avoid sign ambiguity inherent in all blind

techniques1. In Figure 3.2 the log likelihood function is plotted against the remaining

two channel taps h1 and h2 when σ2
n = 1. Figure 3.3 shows the top view of the

same plot. Figures 3.4 and 3.5 show the plot of likelihood function and its top view

respectively, when σ2
n = 0.1. These figures clearly indicate that the log likelihood

function has multiple maxima.

This shows that a completely blind approach for channel estimation would be

challenging. So, we pursue a semiblind approach in which we use Steepest Descent

algorithm to estimate the channel.

3.4 Finding Gradient of L w.r.t. h

As it is difficult to obtain the global maximum of the likelihood function, we will pursue

a semiblind approach here where we use a few pilots to obtain an initial estimate of

1A channel with only two effective taps is chosen so that we can plot the likelihood function
against them in three dimensions.
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Figure 3.2: 3D plot of likelihood function against channel taps with σ2
n = 1
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Figure 3.3: Top view 3D plot of likelihood function against channel taps with σ2
n = 1
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Figure 3.4: 3D plot of likelihood function against channel taps with σ2
n = 0.1
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Figure 3.5: Top view 3D plot of likelihood function against channel taps with σ2
n = 0.1
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the channel and subsequently improve the channel estimate using the steepest descent

algorithm. To this end, we need to evaluate the gradient of the likelihood function

with respect to the channel. We start by representing the channel convolution matrix

H in block form.

3.4.1 Writing H in Block Form

While our approach works in the general case, we assume here that L (the CP length)

divides N (OFDM symbol length) as this allows us to represent the matrices involved

in block form. We emphasize however that our approach is valid in general. Now

define,

B =




h0 0 · · · 0

h1 h0 · · · 0

...
. . .

hL−1 hL−2 · · · h0




(3.10)

C =




hL hL−1 · · · h1

0 hL · · · h2

...
. . .

...

0 0 · · · hL




(3.11)
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then we can write the convolution matrix in the following block form

H =




C B

C B

. . . . . .

C B




(3.12)

3.4.2 Evaluating Second Order Moment of Output Y

As the log likelihood function (equation (3.8)) involves second order moment of output

Y , we want to evaluate it in terms of channel h or specifically in terms of B and C.

The output autocorrelation matrix ΣY can be decomposed as

ΣY = GGH + σ2
nI (3.13)

where

GGH =

26666666666666666664

CCH + BBH BCH O · · · O BBH

CBH CCH + BBH BCH · · · O CBH

O CBH CCH + BBH · · · O O

.

..
.
..

.

..
. . .

.

..

O O O CCH + BBH BCH

BBH BCH O CBH CCH + BBH

37777777777777777775
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with

G =




C B 0 · · · 0

0 C B · · · 0

...
...

. . . . . .
...

0 0 0 · · · B

0 B 0 · · · C




The factor matrix G has the following properties

1. It is a square matrix of size N + L.

2. It is full rank if and only if hL 6= 0

Structure of G in terms of channel parameters

Remember that we need to differentiate the likelihood function with respect to the

channel IR. Now, the likelihood function is a function of ΣY which is a function

of G (see equation (3.13)). The matrix G is itself a linear function of the channel

IR. Specifically, we can write G as a linear combination of L + 1 constant matrices

F 0, F 1, ..., F L i.e.

G =
L∑

i=0

hiF i (3.14)

The matrix F i is an indicator matrix, i.e. it indicates the entries of G that depend

on hi. The matrices F i have the following properties

72



1. It is easy to deduce the matrix F i from the structure of G.

2. F i is square matrix just like G.

3. The entries of F i are zeros or ones. In fact, each F i contains exactly N +L ones

(the same as the dimension of the output vector Y ).

4. It is easy to see that the F ′
is are linearly independent.

5. The F ′
is commute but they are not symmetric.

We can thus write

GT =
L∑

i=0

hiF
T
i (3.15)

or

vec(GT ) =
L∑

i=0

hi vec(F T
i )

=

[
vec(F T

0 ) vec(F T
1 ) · · · vec(F T

L)

]




h0

h1

...

hL




= FhT (3.16)
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where the vec operation transforms a matrix G into a long column vector consisting

of the concatenation of the columns of G. Thus,

∂G

∂h
∆
=

∂ vec(GT )

∂h

= FT (3.17)

We will use this relation in evaluating gradient of L w.r.t h in the following section.

3.4.3 Gradient Matrix of L w.r.t h

We would like to find the gradient of L w.r.t h. By the chain rule, we can write

∂L
∂h

=
∂G

∂h

∂ΣY

∂G

∂L
∂ΣY

(3.18)

In carrying out the differentiation ∂L
∂ΣY

, ΣY is treated as a general matrix. Thus,

despite the fact that ΣY is symmetric and positive definite, we ignore this fact in

obtaining ∂L
∂ΣY

. All properties of ΣY are captured in its relation to G and in the

relation of the latter to h.

We have already evaluated ∂G
∂h

. Lets now evaluate ∂L
∂ΣY

. We can show that [87]

∂L
∂ΣY

= − ∂

∂ΣY

(
ln det(ΣY) + Y TΣY

−1Y
)

= −vec(ΣY
−T )− ∂

∂ΣY

tr(Y Y TΣY
−1)

∂L
∂ΣY

= −vec(ΣY
−T −ΣY

−T Y Y TΣY
−T ) (3.19)
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Similarly in carrying out the differentiation ∂ΣY

∂G , we ignore the sparse structure of

G. The sparse structure is captured in the relation of G to the channel parameters

h.

∂ΣY

∂G
=

∂

∂G
(GGT + σ2

nI)

=
∂G

∂G
(Is ⊗GT ) +

∂GT

∂G
(GT ⊗ Is)

∂ΣY

∂G
= (I ⊗GT ) + Ks,m(GT ⊗ Is) (3.20)

where the second line is obtained by the product rule, and ⊗ and Ks,m stand for

Kronecker product and Commutation matrix respectively [87]. Combining the results

(3.19) and (3.20) yields

∂L
∂G

= − (
(Is ⊗GT ) + Ks,m(GT ⊗ Is)

)
vec(ΣY

−T −ΣY
−T Y Y TΣY

−T )

= − vec
[
GTΣY

−T −GTΣY
−T Y Y TΣY

−T
]

− Ks,mvec
[
ΣY

−T G−ΣY
−T Y Y TΣY

−T G
]

∂L
∂G

= − 2 vec
[
GTΣY

−1 −GTΣY
−1Y Y TΣY

−1
]

(3.21)

where in the last line, we used the property that

Ks,mvec(AT ) = vec(A)
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So, equation (3.18) can now be written as

∂L
∂h

=
∂G

∂h

∂L
∂G

= −2FT vec
[
GTΣY

−1 −GTΣY
−1Y Y TΣY

−1
]

= −2




vec(F T
0 )T

vec(F T
1 )T

...

vec(F T
L)T




vec
[
GTΣY

−1 −GTΣY
−1Y Y TΣY

−1
]

or

∂L
∂h

= −2




tr(F 0G
TΣY

−1 − F 0G
TΣY

−1Y Y TΣY
−1)

tr(F 1G
TΣY

−1 − F 1G
TΣY

−1Y Y TΣY
−1)

...

tr(F LGTΣY
−1 − F LGTΣY

−1Y Y TΣY
−1)




(3.22)

which is our required gradient of size (L + 1) × 1. This is the gradient that we will

use in the steepest descent algorithm further ahead. Thus a necessary condition for

optimality is

∂L
∂h

= 0 (3.23)

This gradient can be used to estimate the channel using the steepest descent algorithm.

Before we do so however, we digress in the next subsection to show how this gradient

provides an alternative form for the optimality condition.
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3.4.4 An Alternative Condition for Optimality

The blind algorithm can also be used to estimate the noise standard deviation. Lets

compute the first derivative of the likelihood function with respect to the noise stan-

dard deviation.

∂L
∂σn

=
∂ΣY

∂σn

∂L
∂ΣY

= −2σnvec(I)T vec(ΣY
−T −ΣY

−T Y Y TΣY
−T )

∂L
∂σn

= −2σntr(ΣY
−1 −ΣY

−1Y Y TΣY
−1) (3.24)

The optimality condition ∂L
∂σn

= 0 together with the condition ∂L
∂h

= 0 allows us to

represent our optimization problem in a different form. Specifically, start from the

optimality conditions

∂L
∂h

= 0

∂L
∂σn

= 0

(3.25)
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and write the first one in an element by element form while performing the multipli-

cation indicated

tr(F 0G
TΣY

−1 − F 0G
TΣY

−1Y Y TΣY
−1) = 0 ×h0

tr(F 1G
TΣY

−1 − F 1G
TΣY

−1Y Y TΣY
−1) = 0 ×h1

...
...

tr(F LGTΣY
−1 − F LGTΣY

−1Y Y TΣY
−1) = 0 ×hL

tr(ΣY
−1 −ΣY

−1Y Y TΣY
−1) = 0 ×σ2

n

Adding the above equations yields

tr

[{(
L∑

i=0

hiF i

)
GT + σ2

nI

}
{
ΣY

−1 −ΣY
−1Y Y TΣY

−1
}
]

= 0

tr
[(

GGT + σ2
nI

) (
ΣY

−1 −ΣY
−1Y Y TΣY

−1
)]

= 0

tr
[
ΣY

(
ΣY

−1 −ΣY
−1Y Y TΣY

−1
)]

= 0

tr
[
I − Y Y TΣY

−1
]

= 0

The necessary conditions (3.25) imply that

Y TΣY
−1Y = L + N (3.26)

78



Substituting this condition back into our original maximization problem (equation

(3.9)) yields the following new form for the objective function.

ĥML = min
h

ln det(ΣY)

subject to (3.27)

Y TΣY
−1Y = L + N

So the optimization problem can be represented in any of the two formulations: the

original one of (3.9) and the one represented by (3.27). Neither of these formulations

are helpful unfortunately as we are not able to solve them for the global optimum

value of h. Instead, as we explained before, we will estimate the channel using the

steepest descent algorithm.

3.5 Semiblind Estimation Using Steepest Descent

Algorithm

As we cannot obtain an explicit solution to the problem at hand and come up with

a convex formulation to pursue a blind approach, we adopt a semiblind technique by

using the gradient to obtain a locally optimum solution. We can do this using Steepest

Descent algorithm initialized with a rough channel estimate obtained by using a few

pilots and channel correlation, i.e.

hT
(k+1) = hT

(k) − µ
∂L

∂h(k)

(3.28)
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where µ is called step size which is a small scalar value and h(k) represents the estimate

of channel h at kth iteration. The algorithm continues to iterate until a maximum

number of iterations is reached or until a stopping threshold is crossed. Before we

demonstrate the performance of the algorithm using simulations, we touch upon the

issue of reducing computational complexity.

3.6 Computational Complexity

Regardless of how we solve the ML problem, the solution involves some heavy com-

putations. We aim here to present some methods to simplify these computations.

Specifically, in calculating the gradient and the likelihood function, two matrix oper-

ations are involved

1. ΣY
−1

2. det(ΣY)

Although det(ΣY) does not appear in the gradient but we still might need it to

calculate the log likelihood function (equation (3.8)) to determine the stopping criteria

of the steepest descent algorithm.

In simplifying the matrix calculations, we will rely on block matrix calculations.

ΣY is given by the equation (3.13), reproduced here for convenience

ΣY = GGH + σ2
nI (3.29)
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where G is a square matrix of size (N +L)×(N +L). We can write G in the following

block form

G =




C D

O A


 (3.30)

where

D =

[
B O · · · O

]

and

A =




C B O · · · O

O C B · · · O

...
. . . . . . · · · ...

B O O · · · C




(3.31)

and where the matrices B and C were defined in equations (3.10) and (3.11). It is

easy to see that the matrix A is circulant so it is diagnolizable by an FFT matrix.
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So, ΣY can now be written as

ΣY = GGH + σ2
nI

=




C D

O A







CH O

DH AH


 + σ2

nI

=




CCH + DDH + σ2
nI DAH

ADH AAH + σ2
nI


 (3.32)

In the following sections, we use the above structure of ΣY to calculate its inverse and

determinant.

3.6.1 Calculating ΣY
−1

Now to calculate ΣY
−1, we use the following block inversion formula [88] (page 30,

formula (2)),




α β

γ ξ




−1

=




(α− βξ−1γ)−1 −(α− βξ−1γ)−1βξ−1

−ξ−1γ(α− βξ−1γ)−1 ξ−1 + ξ−1γ(α− βξ−1γ)−1βξ−1




which is valid provided the inverses involved are valid.

There are two inverses that need to be calculated here

1. ξ−1

2. (α− βξ−1γ)−1
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Given the structure of ΣY in equation (3.32), this transforms to calculating

(AAH + σ2
nI)−1 (N ×N) (3.33)

and

(
CCH + DDH + σ2

nI −DAH(AAH + σ2
nI)−1ADH

)−1
(L× L) (3.34)

Now A is circulant (equation (3.31)), so we can write it as

A = QΛQH (3.35)

where Q is the FFT matrix and Λ is the FFT of the first row of A (which is the

FFT of [ hL hL−1 · · · h1 h0 0 · · · 0 ]). It is easy to see then that the inverse

in (3.33) can be computed as follows

(AAH + σ2
nI)−1 = Q

(
Λ + σ2

nI
)−1

QH (3.36)

= Q




1
|λ1|2+σ2

n
· · · 0

...
. . .

...

0 · · · 1
|λN |2+σ2

n




QH (3.37)

Now, (3.34) is an L × L inverse, so it is easy to calculate. However, it involves an
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N ×N matrix inversion, namely A(AAH + σ2
nI)−1AH which can be evaluated as

A(AAH + σ2
nI)−1AH = Q




|λ1|2
|λ1|2+σ2

n
· · · 0

...
. . .

...

0 · · · |λN |2
|λN |2+σ2

n




QH (3.38)

So, evaluating inverse of (N +L)× (N +L) matrix ΣY reduces to calculating an FFT

(to find Λ) and to calculating the L× L inverse of (3.34).

3.6.2 Calculating det(ΣY)

In order to calculate determinant of ΣY, we use [88] (page 50, formula (6))

det




α β

γ ξ


 = det(ξ) det(α− βξ−1γ) (3.39)

Now, from (3.32),

ξ = AAH + σ2
nI (3.40)

⇒ det(ξ) = det
(
Q(Λ + σ2

nI)QH
)

(3.41)

= det(Λ + σ2
nI) (3.42)

We already know how to calculate ξ−1 from equation (3.37), so det(α−βξ−1γ) involves

calculating the determinant of an L× L matrix.

So to summarize, the inverse and the determinant of the (N +L)× (N +L) matrix
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ΣY reduces to calculating

1. FFT (to find Λ)

2. Inverse and determinant of an L× L matrix.

3.7 Simulation Results

We consider an OFDM system with N = 64 and cyclic prefix of length L = 8. The

OFDM symbol consists of BPSK or 16-QAM symbols. The channel IR consists of 9

iid Rayleigh fading taps. The proposed semiblind algorithm was run for 20 iterations

in all cases. We compare the BER performance of four methods: (i) Perfectly known

channel, (ii) Channel estimated using L+1 pilots, (iii) Channel estimated using semi-

blind method proposed in this chapter using the steepest descent algorithm, and (iv)

Channel estimated using low number of pilots (either 6 or 8) and channel correlation

which is how we initialize the steepest descent algorithm.

3.7.1 BER vs SNR Comparison for BPSK Modulated Data

In Figure 3.6, the proposed semiblind algorithm is compared with the above men-

tioned methods when the input data is BPSK modulated. In this case, the algorithm

is initialized with an estimate obtained by using 6 pilots and channel correlation. The

step size µ used in this case was 7.5 × 10−4. This figure clearly indicates the favor-

able performance of the proposed method especially at high SNR. Thus, while the

pilot based estimate flattens, the BER of the steepest descent algorithm continues to

decrease with SNR.
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Figure 3.6: BER vs SNR comparison for BPSK modulated data

3.7.2 BER vs SNR Comparison for 16−QAM Modulated Data

In Figure 3.7, the performance of the proposed semi blind algorithm is compared with

the remaining three methods for the case of 16−QAM modulated data. Similar to

the BPSK case, the algorithm is again initialized with an estimate obtained by using

6 pilots and channel correlation. The step size µ used in this case was 2.5 × 10−4.

Our conclusion is similar to the conclusion in the BPSK, namely, the steepest descent

method decreases with SNR while the pilot based estimate remains flat for high SNR.

3.7.3 Sensitivity to Number of Pilots

The sensitivity of the proposed algorithm to number of pilots used is studied in Figure

3.8. Specifically, we compare the performance of the semiblind algorithm for BPSK

modulated data when it is initialized by an estimate using 6 or 8 pilots. The step size
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Figure 3.7: BER vs SNR comparison for 16−QAM modulated data

µ used was fixed at 7.5 × 10−4. As expected, the algorithm performs well when it is

initialized with a better estimate.

3.8 Conclusion

In this chapter, we presented a semiblind channel-centered approach for channel es-

timation and data recovery in OFDM transmission. It was argued in this part that

the transmitted data in OFDM is Gaussian. Thus the output is also Gaussian and

its pdf can be evaluated easily. The channel can then be estimated by maximizing

the likelihood function given the output pdf. The experimental results unfortunately

demonstrated that the log likelihood function does not have a unique maxima when

it is plotted against the channel taps. Thus to pursue a completely blind approach
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Figure 3.8: BER vs SNR comparison for BPSK modulated data with different number of
pilots

might be challenging. Therefore, a semiblind approach was adopted using the steepest

descent algorithm initialized by a rough estimate of channel obtained by using a few of

pilots and channel correlation. Methods to reduce computational complexity involved

in evaluating the gradient and the log likelihood function were also suggested.
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CHAPTER 4

MIMO SEMI-BLIND CHANNEL

ESTIMATION AND DATA

DETECTION

4.1 Introduction

This chapter considers receiver design for orthogonal space time block coded1 MIMO

OFDM transmission over frequency selective time-variant spatially correlated chan-

nels. The receiver employs the expectation-maximization (EM) algorithm for joint

channel and data recovery. It makes collective use of the data and channel constraints

that characterize the communication problem. The data constraints include pilots, the

cyclic prefix, the finite alphabet constraint, and space-time block coding. The channel

1We concentrate on space-frequency codes in this work. We note however that a very similar
approach can be used for space-time block codes (STBC). Given the similarity between the two
approaches and the fact that the abbreviation STBC is more familiar, we continue to use this abbre-
viation to refer to our frequency-space codes.
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constraints include the finite delay spread and frequency and time correlation as well

as transmit and receive correlation. The channel estimation part of the receiver boils

down to an EM-based forward-backward Kalman filter. A different implementation of

the forward-backward Kalman filter has also been presented. To avoid the latency and

storage associated with smoothing, we introduce a forward-only Kalman that can per-

form channel (and data) recovery with no latency. Simulations have been performed

to compare the performance of the different implementations of the Kalman filter and

investigate the sensitivity of the reciever to an outer code and different number of

pilots.

4.1.1 The Approach of this Chapter

This chapter considers receiver design for OSTBC-OFDM transmission over frequency

selective, time-variant, and spatially correlated channels. Our approach is based on

[96] which proposed a Kalman filter approach to channel estimation in MIMO OFDM

transmission. We have extended this approach to spatially correlated channels and

explored the use of forward-backward Kalman filter with different implementations.

The receiver makes a collective use of the structure of the communication problem

(i.e. the constraints on the data and on the channel). The data constraints include

the finite alphabet constraint, the cyclic prefix, pilots, and the OSTBC. In addition,

the receiver uses the following constraints on the channel: the finite delay spread,

frequency and time correlation, and spatial correlation.

In spite of the many dimensions we deal with (see Table 4.1), we maintain the
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Table 4.1: Indices used in the analysis of MIMO semiblind channel estimation and
data detection

Variable Index employed
Channel tap p = 0, 1, · · · , P

Frequency tone n = 1, 2, · · · , N

uncoded OFDM symbol
(prior to ST coding)

nu = 1, 2, · · · , Nu

Transmit antenna tx = 1, 2, · · · , Tx

Receive antenna rx = 1, 2, · · · , Rx

coded OFDM symbol
i.e. part of a ST block

nc = 1, 2, · · · , Nc

Space-time block t = 1, 2, · · ·
Sample time m = 1, 2, · · ·

transparency of the presentation.

4.1.2 Organization of the Chapter

The chapter is organized as follows. After introducing our notation, we give an

overview of the transceiver in Section 4.2. Section 4.3 then presents the input/output

equations for MIMO-OFDM with ST coding (the equations are needed for channel and

data recovery). Channel estimation using the FB-Kalman is described in Section 4.4

at the end of which we summarize the transceiver algorithm. Section 4.5 presents two

extensions/modifications of the algorithm and Section 4.6 presents our simulations.

We conclude the chapter in Section 4.7.

4.1.3 Notation

Proper choice of notation is essential for clarity and consistency. One challenge in

choosing notation is the many dimensions we deal with in this chapter including
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sample time, (frequency) tone, (channel) tap, (OFDM) symbol index, and space.

We continue to use the notation of Chapters 2 and 3. Additionally in this chapter,

we use ∗ to denote conjugate transpose, ⊗ to denote Kronecker product, IN to denote

the size N×N identity matrix, and 0M×N to denote the all zero M×N matrix. Given

a sequence of vectors htx
rx

for rx = 1 · · ·Rx and tx = 1 · · ·Tx, we define the following

stack variables

hrx =




h1
rx

...

hTx
rx




and h =




h1

...

hRx




(4.1)

The notation vec(X) is column vector consisting of the concatenation of all column

vectors of X while the operation diag(X ) transforms the vector X into a matrix with

diagonal X .

4.2 System Overview

In this section, we give an overview of the communications system: transmitter, chan-

nel, and receiver [96].

4.2.1 Transmitter

A block diagram of the transmitter is shown in Figure 4.1. The bit sequence to be

transmitted passes through a convolutional encoder that serves as an outer code for the

system. The coded output then passes through a random interleaver which rearranges

the order of the bits according to a random permutation. The interleaved bit sequence
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is mapped to QAM (or any modulation scheme for that matter) symbols using gray

coding and the QAM symbols are in turn mapped to the OFDM symbols with some

tones reserved for the pilot symbols. The STBC encoder uses the OFDM symbols to

construct the ST block by mapping the various OFDM symbols to a specific antenna

and specific time slot depending on the ST code used. Each antenna performs an

IFFT operation on the OFDM symbols to produce the time-domain OFDM symbols

and adds a cyclic prefix to each prior to transmission.

Figure 4.1: OSTBC OFDM Transmitter

4.2.2 Channel Model

We consider a time-variant and frequency selective MIMO channel. For a general

MIMO system, the input/output time-domain relationship is described by

y(m) =
P∑

p=0

H(p)x(m− p)
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where H(p) is the Rx × Tx MIMO impulse response at tap p and where m represents

the sample time index. The taps H(p) usually incorporate the effect of the transmit

filter and the effects of the transmit and receive correlation making H(p) correlated

across space and tap. Here it is assumed for simplicity that H(p) is iid for all p

(In Appendix A, the general case where the channel exhibits transmit and receive

correlation is described which was derived in [96]). We will also assume that the tap

H(p) remains constant over a single ST block (and hence over the constituent OFDM

symbols) and changes from the current block (H t(p)) to the next (H t+1(p)) according

to the dynamical equation2

H t+1(p) = α(p)H t(p) +
√

(1− α2(p))e−βpU t(p) (4.2)

Here, U t(p) is an iid matrix with entries that are N (0, 1) and α(p) is related to the

Doppler frequency fD(p) by α(p) = J0(2πfDT (p)), where T is the time duration of

one ST block. The variable β in (4.2) corresponds to the exponent of the channel

decay profile while the factor
√

(1− α2(p))e−βp ensures that each link maintains the

exponential decay profile (e−βp) for all time.

Using this dynamical model, we can obtain the state-space model for the impulse

response htx
rx

between transmit antenna tx and receive antenna rx. From (4.2), we can

write

htx
rxt+1

(p) = α(p)htx
rxt

(p) +
√

(1− α2(p))e−βputx
rxt

(p) (4.3)

2We shall at times suppress the time dependence for notational convenience.
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By stacking (4.3) over the taps p = 0, 1, . . . , P, we obtain the dynamical model

htx
rxt+1

= Fhtx
rx

+ Gutx
rx

(4.4)

where

F =




α(0)

. . .

α(P )




and G =




√
1− α2(0)

. . .

√
(1− α2(P ))e−βP




By further stacking (4.4) over all transmit and receive antennas (refer to our stacking

notation in (4.1)), we obtain

ht+1 = (ITxRx ⊗ F ) ht + (ITxRx ⊗G) ut (4.5)

where ht+1, ht, and ut, are vectors of size TxRx(P + 1)× 1. The dynamical equation

(4.5) shows explicit dependence on the space-time index t (so t=1 for the 1st space-

time symbol which consists of two OFDM symbols in the Alamouti case, t=2 for the

2nd space-time symbol, and so on).

For complete characterization of the dynamical model, we need to specify the

covariance of ut, and also the covariance of the channel at the first time instant. It is
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easy to show that

E [utu
∗
t ] = IRx ⊗ E

[
urxu

∗
rx

]

= IRx ⊗
(
ITx ⊗ E

[
utx

rx
utx∗

rx

])

= IRx ⊗ ITx ⊗ IP+1 = ITxRx(P+1)

We can similarly show that the channel covariance at the first time instant is given by

E [h0h
∗
0] = ITxRx ⊗GG∗

The covariance information is important for employing the Kalman filter which is

used for channel estimation. We finally note that while (4.2) and (4.5) are equivalent,

the latter model is in vector form and hence lends itself more to the Kalman filter

operations.

A note about time variation:

One drawback of the approach in this chapter is the block fading model that we adopt.

For it is more realistic to assume that the channel continuously varies with time. There

are 3 justifications for using the block fading model:

1. While it is more realistic to assume that the channel continuously varies over

the OFDM symbol, the model we assume is more valid than the block fading

model that is widely used in literature. For in the block fading model, it is

usually assumed that the channel remains constant over any one symbol and

96



varies independently from one symbol to another. Here, we account for the

time-correlation across symbols.

2. The purpose of this chapter is to design an algorithm that makes a collective use

of the underlying structure of the communication problem to lower the training

overhead required in the time-variant case. Solving the general time-variant case

is a future research problem that builds upon the findings in this chapter.

3. One could still envision applications where the channel is constant over a ST

block, but varies substantially from one symbol to the next. Consider for exam-

ple a multiuser application in which the wireless channel is time shared. Imagine

also that the channel is very slowly time-variant but the duty cycle is very large.

In that case, the channel that each user experiences during his transmission

burst is very slow, but from one burst to another, the channel would change

substantially due to the long duty cycle. This situation would also make sense

in random access scenarios.

4.2.3 Receiver

This chapter is concerned with designing a receiver for the system described above.

For completeness and as an allusion to the developments further ahead, Figure 4.2

shows a block diagram of the proposed receiver. As we shall show, the receiver’s

core operation is based on the EM algorithm which performs joint channel and data

recovery:

97



Figure 4.2: OSTBC OFDM Receiver

STBC Decoder/Data Detector (Estimation Step)

The STBC decoder/data detector calculates the conditional first and second moments

of the transmitted data (soft estimate) to be used by the channel estimator.

Channel Estimator (Maximization Step)

Pilots are used to initialize channel estimation. The channel estimator then uses the

soft data estimates together with the data and channel constraints to improve the

channel estimate. These two processes (channel estimation and data detection) go on

iteratively until a stopping criterion is satisfied.

In what follows, we describe the main results which were derived in [96]. We start

by explaining the input/output equations for MIMO-OFDM system.
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4.3 I/O Equations for MIMO-OFDM

As pointed out in Subsection 4.2.3, the receiver performs two operations, channel

estimation and data detection. As such, we need to derive two forms of the (I/O)

equations: one that lends itself to channel estimation (i.e. treats the channel impulse

response as the unknown) and a dual version that lends itself to data detection (i.e.

treats the input in its uncoded form as the unknown). To this end, Let X tx be

the OFDM symbol transmitted through antenna tx which first undergoes an IDFT

xtx = 1/NQX tx where Q is the N × N IDFT matrix. The system then appends a

cyclic prefix before transmission. At the receiver end, the receiver strips the cyclic

prefix to obtain the time domain symbol ytx
rx

. The I/O equation of the OFDM system

between transmit antenna tx and receive antenna rx is best described in the frequency

domain

Y tx
rx

= diag (X tx) Q∗
P+1h

tx
rx

+ N rx (4.6)

where Y tx
rx

, X tx , Htx
rx

, and N tx
rx

are the (length-N) DFT’s of ytx
rx

, xtx , htx
rx

, nrx , re-

spectively, and where (4.6) follows from the fact that

Htx
rx

= Q∗




htx
rx

O(N−P−1)×1


 = Q∗

P+1h
tx
rx

(4.7)
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Here QP+1 represents the first P + 1 rows of Q. By superposition and using the

stacking notation (4.1), we can express the I/O equation at receive antenna rx as

Yrx = [diag(X 1) · · · diag(X Tx)] (ITx ⊗Q∗
P+1)hrx + N rx (4.8)

4.3.1 I/O Equations with Space Time Coding: Channel Es-

timation Version

Consider a set of Nu uncoded OFDM symbols {S(1), . . . , S(Nu)} which we would

like to transmit over Tx antennas and Nc time slots. Following [95], we can perform

ST coding using the set of Tx × Nc matrices {A(1),B(1), . . . , A(Nu), B(Nu)} which

characterizes the ST code. We can now show that the OFDM symbol transmitted

from antenna tx at time nc is given by

X tx(nc) =
Nu∑

nu=1

atx,nc(nu) Re S(nu) + jbtx,nc(nu) Im S(nu) (4.9)

where atx,nc(nu) is the (tx, nc) element of A(nu) and btx,nc(nu) is the (tx, nc) element

of B(nu). Thus, in the presence of ST coding, (4.8) reads

Yrx(nc) = [diag(X 1(nc)) · · · diag(X Tx(nc))](ITx ⊗Q∗
P+1)hrx + N rx(nc)
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This represents the I/O equation at antenna rx at OFDM symbol nc of a ST block.

Collecting this equation for all such symbols yields

Yrx = Xhrx + N rx (4.10)

where

Yrx =




Yrx(1)

...

Yrx(Nc)




X =




diag(X 1(1)) · · · diag(X Tx(1))

diag(X 1(2)) · · · diag(X Tx(2))

...

diag(X 1(Nc)) · · · diag(X Tx(Nc))




(4.11)

Now, by further collecting this relationship over all receive antennas, we obtain

Y t = (IRx ⊗X t)ht + N t (4.12)

This equation captures the I/O relationship at all frequency bins, for all input and

output antennas, and for all OFDM symbols of the tth ST block. We can also construct

a similar I/O relationship that incorporates (4.12) as well as the effect of the cyclic

prefix observation.

Y t = (IRx ⊗X t)ht + N t (4.13)
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where at a particular antenna rx,

Yrx =




Yrx

y
rx


 and X =

[
X1 X2 · · · XTx

]
(4.14)

with

X tx =




X tx(1)

X tx(2)

...

X tx(Nc)




and

X tx(nc) =




X tx(nc)

X tx(nc)


 =




diag(X tx(nc))Q
∗
P+1

X tx(nc)




The matrix X tx is constructed using the cyclic prefix of current and previous symbol.

For a particular transmitter, with i representing the current symbol and i − 1 the

previous one, X is given by

X i =




xi(0) xi−1(P − 1) · · · xi−1(0)

xi(1) xi(0) · · · xi−1(1)

...
. . . . . .

...

xi(P − 1) · · · xi(0) xi−1(P − 1)




(4.15)
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To perform initial channel estimation, we select those equations where the pilots

are present. Let Ip denote the index set of the pilots bins. Then, the pilot/output

equation takes the form

Y tIp
= (IRx ⊗X tIp

)ht + N tIp
(4.16)

As can be seen, the equations (4.12), and (4.16) are quite similar and using them in

a Kalman filter context will be similar as well.

4.3.2 I/O Equations with Space Time Coding: Data Detec-

tion Version

Signal detection in ST-coded OFDM is done on a tone-by-tone basis (i.e., as in SISO

OFDM), except that the tones are collected for the whole ST block (i.e., for Rx

receive antennas and over Nc time slots). From (4.6), we can construct the following

I/O equation at any tone n belonging to the OFDM symbol nc

Yrx(nc) =

[
H1

rx
· · · HTx

rx

]




X1(nc)

...

XTx(nc)




+Nrx(nc) (4.17)
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We suppress the dependence on n for notational convenience. Collecting this relation-

ship for all receive antennas yields




Y1(nc)

...

YRx(nc)




=




H1
1 · · · HTx

1

... · · · ...

H1
Rx

· · · HTx
Rx







X1(nc)

...

XTx(nc)




+




N1(nc)

...

NRx(nc)




Or, more succinctly,

Y(nc) = HX (nc) + N (nc)

By further concatenating this relationship for nc = 1, · · · , Nc, we can show that the

following relationship holds (see [95])

Y = C




Re S

Im S


 + N (4.18)

where

Y =




Y(1)

...

Y(Nc)




, S =




S(1)

...

S(Nu)




, and C =

[
Ca Cb

]

with

Ca =

[
vec(HA(1)) · · · vec(HA(Nu))

]
,

and Cb =

[
vec(HB(1)) · · · vec(HB(Nu))

]
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We finally note that the STBC code is orthogonal if and only if the matrix C satisfies

[95]

Re [C∗C] = ||H||2I2Nu ∀H (4.19)

This property is essential to perform data detection. We stress that the relationships

(4.17) through (4.19) apply at a particular tone n and that this dependence has been

omitted for notational convenience.

4.4 The EM-Based Forward-Backward Kalman

Consider the OFDM system of this chapter, essentially described by the state-space

model

ht+1 = (ITxRx ⊗ F )ht + (ITxRx ⊗G)ut (4.20)

Y t = (IRx ⊗X t)ht + N t (4.21)

with h0 ∼ N (0,Π) and ut ∼ N (0,Ru). The MMSE estimate of the channel sequence

given the input and output sequences XT
0 and YT

0 is obtained by the forward-backward

(FB) Kalman filter. We consider the following two cases.

4.4.1 Channel Estimation–Known Input Case

Consider the state-space model (4.20)–(4.21). Given the input and output sequences

XT
0 and YT

0 , the MAP (or equivalently MMSE) estimate of hT
0 is obtained by applying
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the following (forward-backward Kalman) filter to the state-space model (4.20)–(4.21)

[96]

Forward run: For i = 1, . . . , T, calculate

Re,t = σ2
nITxRxN + (IRx ⊗X t)P t|t−1(IRx ⊗X∗

t ) P 0|−1 = Π0 (4.22)

Kt = P t|t−1(IRx ⊗X∗
t )R

−1
e,t (4.23)

ĥt|t =
(
ITxRx(P+1) −Kt(IRx ⊗X t)

)
ĥt|t−1 + KtY t, (4.24)

ĥt+1|t = (ITxRx ⊗ F )ĥt|t, h0|−1 = 0 (4.25)

P t+1|t = (ITxRx ⊗ F )
(
P t|t−1 −KtRe,tK

∗
t

)
(ITxRx ⊗ F ∗) + GRuG

∗ (4.26)

Backward run: Starting from λT+1|T = 0 and for t = T, T − 1, . . . , 0, calculate

λt|T = (IP+N − (IRx ⊗X∗
t )K

∗
t ) (I ⊗ F ∗)λt+1|T

+(I ⊗X t)R
−1
e,t

(
Y t − (I ⊗X t)ĥt|t−1

)
(4.27)

ĥt|T = ĥt|t−1 + P t|t−1λt|T (4.28)

The desired estimate is ĥt|T .

4.4.2 Channel Estimation–Unknown Input Case

Consider the state-space model (4.20)–(4.21) and assume that the receiver does not

have access to the transmitted data XT
0 . The channel estimate at the jth iteration
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hT
0

(j)
of the EM algorithm is obtained by applying the forward-backward Kalman

(4.22)–(4.28) to the following state-space model [96]

ht+1 = (ITxRx ⊗ F )ht + (ITxRx ⊗G)ut (4.29)


Y t

0TxRx(P+1)×1


 =




IRx ⊗ E[X t]

IRx ⊗ Cov[X∗
t ]

1/2


 ht +




N t

nt


 (4.30)

where nt is virtual noise that is not physically present and that is independent of the

physical noise N t.

To fully implement the EM algorithm, we need to initialize the algorithm and calculate

the first and second moments of the input, which we do next.

4.4.3 Initial Channel Estimation

We obtain the initial channel estimate from the pilot/output equation (4.16) together

with the dynamical channel model (4.5). Specifically, we do this by applying the FB

Kalman to the following state-space model

ht+1 = (ITxRx ⊗ F ) ht + (ITxRx ⊗G) ut (4.31)

Y tIp
= (IRx ⊗X tIp

)ht + N tIp
(4.32)

i.e., by applying the FB Kalman filter (4.22)-(4.28) with the following substitution

Y t −→ Y tIp
, X t −→ X tIp

, and ITxRxN −→ ITxRx|Ip|
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4.4.4 Data Detection

To detect the data, we use the data detection version of the I/O equation (4.18). Upon

multiplying both sides by C∗ and taking the real part, we obtain

Ỹ = ‖H‖2




Re S

Im S


 + Ñ (4.33)

where Ỹ and Ñ are 2Nu × 1 vectors defined by Ỹ = Re C∗Y and Ñ = Re C∗N .

Since C is orthogonal, the noise Ñ remains white, and the input can be detected on

an element-by-element basis. We will now demonstrate how to detect the elements of

Re S (the imaginary part can be treated similarly). So let R =
{
r1, . . . , r|R|

}
denote

the alphabet set from which the elements of Re S take their values. We can evaluate

the conditional pdf f(ReS(nu)|Ỹ(nu)) by applying Bayes rule on it which yields

f(ri|Ỹ(nu),H) =
f(ri, Ỹ(nu)|H)

f(Ỹ(nu)|H)

=
f(ri, Ỹ(nu)|H)∑|R|
i=1 f(Ỹ(nu), ri|H)

=
f(Ỹ(nu)|ri,H)f(ri|H)∑|R|
i=1f(Ỹ(nu)|ri,H)f(ri|H)

f(ri|Ỹ(nu)) =
e
−
|Ỹ(nu)−





H



2ri|2

2σ2
n

∑|R|
i=1 e

−
|Ỹ(nu)−





H



2ri|2

2σ2
n

(4.34)

We can use this pdf to calculate conditional expectation of ReS(nu) and its second
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moment given the output Ỹ(nu)

E[ReS(nu)|Ỹ(nu)] =

∑|R|
i=1 rie

−
|Ỹ(nu)−





H



2ri|2

2σ2
n

∑|R|
i=1 e

−
|Ỹ(nu)−





H



2ri|2

2σ2
n

(4.35)

E[|ReS(nu)|2 |Ỹ(nu)] =

∑|R|
i=1 r2

i e
−
|Ỹ(nu)−





H



2ri|2

2σ2
n

∑|R|
i=1 e

−
|Ỹ(nu)−





H



2ri|2

2σ2
n

(4.36)

We can similarly calculate the two moments of the imaginary part. Now equation

(4.35)–(4.36), just like (4.17)–(4.19), apply at a certain frequency tone n. So collecting

(4.35) for all tones (n = 1, · · · , N) produces the two moments of the uncoded OFDM

symbols. Specifically, we can calculate

E[Re S(nu)], E[Im S(nu)], E[diag(Re S(nu))
2], and E[diag(Im S(nu))

2] (4.37)

We show in Appendix B that these moments are enough to characterize the first and

second moments E[X] and E[X∗X], which are needed for channel estimation.

4.4.5 Summary of the EM-Based FB Kalman

We now have all the elements for the iterative receiver for channel and data recovery,

and for ease of reference, we summarize the receiver algorithm in the following. Given

a sequence of input and output symbols XT
0 and YT

0 , perform the following operations:

1. Calculate the initial channel estimate hT
0 (0) by applying the FB Kalman filter

to the state-space model (4.31)–(4.32), i.e. by applying (4.22)–(4.28) with the
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following substitutions

Y t −→ Y tIp
, X t −→ X tIp

, and ITxRxN −→ ITxRx|Ip|

2. Iterate between the expectation and maximization steps for j = 1, . . . , Niter :

(a) Expectation:

• Compute the first two moments of the uncoded OFDM symbols

S(1),S(2), · · · ,S(nu), given the output YT
0 and the most recent esti-

mate of the channel, hT
0 (j − 1).

• Use these moments to calculate the moments of X through the rela-

tionships (4.9) and (4.35).

(b) Maximization: Obtain the channel estimate hT
0 (j) by employing the FB

Kalman to the state-space model (4.29)–(4.30), i.e. by applying (4.22)–

(4.28) with the following substitutions

IRx ⊗X t −→




IRx ⊗ E[X t]

IRx ⊗ Cov[X∗
t ]

1/2


 ,

Y t −→




Y t

0TxRx(P+1)×1


 , and

ITxRxN −→ ITxRx(N+P+1)

The algorithm can be stopped when the maximum number of iterations Niter is reached

or when the difference between two consecutive estimates ‖hT
0 (j) − hT

0 (j − 1)‖2 is
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below a certain threshold.

4.5 Two Extensions/Modifications of the FB Kalman

Filter

In the following, we present two modification of the FB Kalman filter described above.

4.5.1 Modification-I: Kalman- (Forward-Only) Based Esti-

mation

One disadvantage of the FB Kalman (summarized in Subsection 4.4.5 above) is the

storage and latency involved. The algorithm needs to wait for all T + 1 symbols

before it can execute the backward run and hence obtain the channel estimate. One

way around this is to reduce the window size T. Alternatively, we can run the filter in

the forward direction only (i.e., run (4.22)–(4.26)) for both the initial estimation and

the EM iteration. The algorithm then collapses to the Kalman-based filter proposed

in [64] where the data and channel are recovered within one ST symbol.

4.5.2 Modification-II: Helix Based FB Kalman

The FB Kalman explained in Subsection 4.4.5 involves a forward run (in which channel

and data are estimated using EM algorithm from one symbol and passed on to the

next) followed by a backward run and this whole cycle is repeated for a certain number

of iterations. As the iterations in this case resemble a cyclic process, so this Kalman
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filter can be called Cyclic FB Kalman. One modification of this can be the case when

in the forward run, the EM algorithm is applied for a certain number of iterations on

one symbol so that the channel estimate is refined as much as possible before being

passed on to the next symbol. In the end, a backward run can be applied once. As in

this case the iterations resemble a helix, so it is called a Helix based Kalman filter.

4.6 Simulation Results

The transmitter and receiver illustrated in Figures 4.1 and 4.2 were implemented. The

outer encoder is a rate 1/2 convolutional encoder and the coded bits are mapped to

16-QAM symbols using gray coding. We use the OSTBC commonly known as the

Alamouti code with number of time slots Ns = 2 and number of transmitters Tx = 2

[94].

We use spatially correlated MIMO channel model (described in Appendix A) with

transmit and receive correlation matrices

T (p) =




1 ζ

ζ 1


 and R(p) = I

where ζ = 0.8. Other parameters used are α = 0.8, β = 0.2, and P = 16.

Packets are transmitted at each SNR value until a minimum number of errors

occur. Each packet consists of 12 OFDM symbols transmitted over six ST blocks.

Each OFDM symbol consists of 64 frequency tones and a cyclic prefix of length 16.

The first ST block comprises of 16 pilots while the number of pilots in subsequent
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blocks is fixed at twelve or mentioned otherwise. Two EM iterations were used in all

cases.

In the following, we compare the performance of different implementation of Kalman

filter and study the effect of using outer code and different number of pilots on the

performance of the receiver.

4.6.1 Comparison of Kalman and FB Kalman over Spatially

White and Spatially Correlated Channels

The performance of Kalman and the FB-Kalman is compared in Figure 4.3 over the

two channel models i.e. spatially correlated and spatially white channel model. In

both cases, soft estimate of data is used. The number of pilots used in this case was 12.

It can be observed from Figure 4.3 that both Kalman and FB-Kalman perform closer

to the perfect channel in the case of spatially correlated channel. So, spatial correlation

(practical scenario) makes the performance of both Kalman and FB-Kalman better

as compared to the case of spatially white channel model.

4.6.2 Comparison of Kalman, FB Kalman and Helix Based

FB Kalman

Figure 4.4 compares the performance of the different implementations of the Kalman

filter (Forward Only Kalman, Cyclic FB Kalman and Helix based FB Kalman) over

spatially correlated channel. It can be seen that the helix based FB Kalman filter

outperforms the other two implementations.
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Figure 4.3: BER performance of Kalman and FB-Kalman using Soft data over spatially
white and correlated channel models
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Figure 4.4: BER performance of Kalman, FB Kalman (Cyclic) and Helix based FB Kalman
over spatially correlated channel
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Figure 4.5: Effect of using outer code on performance of FB Kalman (Cyclic) and FB
Kalman (Helix) over spatially correlated channel

4.6.3 Effect of Using Outer Code

In Figure 4.5, the effect of using outer code on the performance of the receiver em-

ploying the two implementations of FB Kalman over spatially correlated channel is

presented. It can be observed that by using outer code, the performance of the receiver

is improved quite significantly.

4.6.4 Effect of Using Different Number of Pilots

The sensitivity of the algorithm (using Cyclic FB Kalman and Helix based FB Kalman)

to different number of pilots (six and twelve in this case) has been presented in Fig-

ure 4.6. Clearly, the twelve pilots case outperforms the six pilots case. The same

conclusion can be drawn from Figure 4.7 in which the performance of the two imple-
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Figure 4.6: Sensitivity of FB Kalman (Cyclic) and FB Kalman (Helix) to different number
of pilots using an outer code

mentations of FB Kalman filter has been compared without using the outer code.

4.7 Conclusion

In this chapter we considered a semiblind design for space time block coded MIMO-

OFDM transmission over time-variant spatially correlated channels. This is an ex-

tension of the work done by [96] which proposed a Kalman filer approach to channel

estimation in spatially white MIMO-OFDM systems. All possible constraints on the

channel (the finite delay spread, frequency, time, and spatial correlation) and the data

(the finite alphabet constraint, the cyclic prefix, pilots and the orthogonal space time

block coding) were utilized. The channel estimation part boils down to EM based

forward backward Kalman filter. A relaxed (forward-only) version of the algorithm
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Figure 4.7: Sensitivity of FB Kalman (Cyclic) and FB Kalman (Helix) to different number
of pilots without using an outer code

that is able to perform recovery with no latency and hence avoid the delay and storage

shortcomings of the FB-Kalman was also considered. A different implementation of

FB Kalman called Helix based FB Kalman filter was proposed and compared with

the (forward-only) Kalman and FB Kalman (cyclic). Simulation results show the im-

provement in the performance of the receiver when it employs helix based FB Kalman

filter. The performance of the receiver in the presence of an outer code and reduced

number of pilots was also presented.
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APPENDIX A: Channel Model in the Presence of

Spatial Correlation

In what follows, the spatially white channel model described in Section 4.2.2 is pre-

sented for the practical scenario of spatial correlation between the MIMO channels. It

was derived in [96] but its effect on the performance of the receiver was not studied.

We start by presenting the transmit correlation case, and then generalize the results

to deal with the general (transmit and receive) correlation case. In the transmit

correlation case, H(p), the MIMO impulse response at tap p, is given by

H(p) = W (p)T 1/2(p) (A-1)

where T 1/2(p) is the transmit correlation matrix (of size Tx) at tap p and where W (p)

consists of iid elements. The matrix W (p) remains constant over a single ST block

and varies from one ST block to the next according to3

W t+1(p) = α(p)W t(p) +
√

(1− α2(p))e−βpU t(p) (A-2)

where α(p), β, and U t(p) are as defined in Subsection 4.2.2.

Just as we did in Subsection 4.2.2, we would like to construct a recursion for the

tap htx
rx

(p) and subsequently scale it up for the SISO and MIMO cases. Now since

htx
rx

(p) is the (rx, tx) element of H(p), we deduce from (A-1) that it is the inner product

3We suppress the time dependence at times for notational convenience.
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of the rx row of W (p) and the tx column of T 1/2, i.e.

htx
rx

(p) = wrx(p)ttx(p) (A-3)

Moreover, from (A-2), we have the following recursion for wrx(p)

wrx,t+1(p) = α(p)wrx,t(p) +
√

(1− α2(p))e−βpurx,t(p)

Post-multiplying both sides by ttx(p) yields

wrx,t+1(p)ttx(p) = α(p)wrx,t(p)ttx(p) +
√

(1− α2(p))e−βpurx,t(p)ttx(p)

This means that htx
rx

(p) satisfies the dynamical equation

htx
rx,t+1(p) = α(p)htx

rx,t(p) +
√

(1− α2(p))e−βputtxrx,t(p) (A-4)

where uttxrx
is defined by

uttxrx
(p) = urx(p)ttx(p)

Concatenating (A-4) for p = 1, 2, . . . , P yields a dynamic equation for the impulse

response

htx
rx

=




htx
rx

(0)

...

htx
rx

(P )




=




wrx(0)ttx(0)

...

wrx(P )ttx(P )




which is the same as the dynamic equation (see (4.4)) for the spatially uncorrelated
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case

htx
rx,t+1 = Fhtx

rx,t + Guttx
rx,t (A-5)

The only difference from the uncorrelated case is that uttx
rx

is no more white. Rather,

we have

E
[
uttx

rx
uttx∗

rx

] ∆
= E




urx(0)ttx(0)

urx(1)ttx(1)

...

urx(P )ttx(P )




[
ttx∗(0)u∗rx

(0) ttx∗(1)u∗rx
(1) · · · ttx∗(P )urx∗(P )

]

=




tttx
tx(0)

tttx
tx(1)

. . .

tttx
tx(P )




∆
= diag(tttx

tx)

where

tttx
rx

=




trx∗(0)ttx(0)

trx∗(1)ttx(1)

...

trx∗(P )ttx(P )




=




trx(0)ttx(0)

trx(1)ttx(1)

...

trx(P )ttx(P )




and where the second line follows from the fact that trx∗(p) = ttx(p) since T 1/2(p) is
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conjugate symmetric. In general, we can show that

E[utrxut∗
r
′
x
] =




diag(tt1
1) diag(tt2

1) · · · diag(ttTx
1 )

diag(tt1
2) diag(tt2

2) · · · diag(ttTx
2 )

...
... · · · ...

diag(tt1
Tx

) diag(tt2
Tx

) · · · diag(ttTx
Tx

)




for rx = r′x and is zero otherwise. Alternatively, we can write this as

E[utrxut∗
r
′
x
] =





∑P
p=0 T (p)⊗ (

IpBI
p)

for rx = r′x

O otherwise

where

B =




1 0 · · · 0

0 0 · · · 0

...
... · · · ...

0 0 · · · 0




, I =




0

1 0

1
. . .

. . . 0

1 0




,

and I =




0 1

0
. . .

. . . 1

0 1

0



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Collecting (A-5) for all transmit and receive antennas yields

ht+1 = (ITxRx ⊗ F ) ht + (ITxRx ⊗G) utt (A-6)

where

E[uu∗] = IRx ⊗ E[utrxut∗rx
]

=
P∑

p=0

IRx ⊗ T (p)⊗ (
IpBI

p)
(A-7)

When the channel exhibits both transmit and receive correlation, the IR h continues

to satisfy the dynamical equation (A-6) except that the correlation of the innovation

u is now given by

E[uu∗] =
P∑

p=0

R(p)⊗ T (p)⊗ (
IpBI

p)

APPENDIX B: Calculating the Moments of X

In this appendix, we demonstrate that the four moments (4.37) of the uncoded OFDM

symbol S(nu) are enough to calculate the first two moments of X, E[X] and E[X∗X].

Since X depends linearly on Re S(nu) and Im S(nu) (see (4.9) and (4.11)), it is straight

forward to calculate the mean of X starting from the means of Re S(nu) and Im S(nu).

Now from (4.11), we note that evaluating E[X∗X] boils down to evaluating the cross
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correlation E[diag(X ∗
i (nc))diag(X j(n

′
c))] Recall also that

X tx(nc) =
Nu∑

nu=1

atx,nc(nu) Re S(nu) + jbtx,nc(nu) Im S(nu) (B-1)

This means that calculating the cross expectation boils down to calculating the cross

correlation of Re S(nu), Im S(nu), Re S(n′u), and Im S(n′u) for nu, n
′
u = 1, · · · , Nu. It is

easy to see that these variables are independent for nu 6= n′u. Moreover, since the noise

in (4.33) is white, one can also see that Re S(nu) and Im S(nu) are independent. As a

result, we can completely characterize the cross correlation E[diag(X ∗
i (nc))diag(X j(n

′
c))]

and hence the expectations E[X] and E[X∗X] starting from the first and second mo-

ments of (4.37).
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CHAPTER 5

CONCLUSIONS AND FUTURE

WORK

5.1 Concluding Remarks

This Thesis has considered blind and semiblind algorithms for channel estimation

and data recovery in OFDM transmission. The first part of the Thesis presented a

blind algorithm with data-centered approach. The blind algorithm boils down to an

integer nonlinear-least squares problem which becomes simpler in the case of constant

modulus data. It was proved that the data can be recovered in an OFDM system

from output data only, irrespective of the channel zero locations and the quality of

channel estimate. To reduce the high computational complexity involved in the blind

algorithm, several iterative methods were proposed. It was found that using Newton’s

method (initialized with a rough estimate of data) performed better than all other

iterative methods proposed. It was also shown that how the CP can be used to improve
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the performance of the OFDM receiver whether operating in blind, semiblind, training

or perfectly known channel modes. Specifically, in this method, data is recovered using

both the linear and circular subchannels as opposed to the conventional method which

utilized only circular subchannel. This method performs well, especially for the cases

when channel has zeros on FFT grid.

The second part of Thesis presented a semiblind channel-centered approach. It was

proved in this part that the transmitted data in OFDM can be assumed Gaussian. As

the noise is also considered Gaussian, this makes the output also Gaussian and its pdf

is easily evaluated. The channel is estimated by maximizing the log likelihood function

given the output pdf. The experimental results unfortunately demonstrated that the

log likelihood function is not unimodal when it is plotted against the channel taps.

Therefore, a semiblind approach was adopted using the steepest descent algorithm

initialized by a rough estimate of channel obtained by using a few pilots and channel

correlation. Methods to reduce computational complexity involved in evaluating the

gradient and log likelihood function were also presented.

The last part of Thesis considered a semiblind design for space time block coded

MIMO-OFDM transmission over time-variant spatially correlated channels. All pos-

sible constraints on the channel (the finite delay spread, frequency, time, and spa-

tial correlation) and the data (the finite alphabet constraint, the cyclic prefix, pilots

and the orthogonal space time block coding) were utilized. The channel estimation

part boils down to EM based forward backward (FB) Kalman filter. Two modifi-

cation/extensions of the FB Kalman filter were presented which include a relaxed
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(forward-only) version of the algorithm (that is able to perform recovery with no

latency) and a helix based FB Kalman filter. The performance of the receiver by

employing the three different implementations of the Kalman filter was presented.

Simulation results showed that the helix based FB Kalman filter outperforms the

other two Kalman filters. The performance of the receiver in the presence of an outer

code and by using reduced number of pilots was also studied.

5.2 Future Work

5.2.1 General Time Variant Case

This Thesis deals with block fading channels i.e. the channel is assumed to be constant

during the transmission of one block. By block, we mean an OFDM symbol for SISO

transmission and a space-time block for MIMO transmission. It is more realistic to

assume that the channel continuously varies with time which is a future research

problem which can be build upon the findings in this Thesis. Specifically, we will

assume that the channel varies within the OFDM symbol (resulting in intercarrier

interference (ICI)) and use the various constraints used in this Thesis to perform

channel estimation, ICI cancelation, and data detection.

5.2.2 Iterative Methods for Non-Constant Modulus Data

In Chapter 2, the blind algorithm presented is valid for constant as well as non-

constant modulus data. The emphasis in the chapter was on constant modulus data
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as things simplified in this case. The approximate methods proposed to reduce the

computational complexity involved in the blind algorithm are also applicable only to

constant modulus data. Iterative methods for non-constant modulus data can also be

developed similar to the methods presented in this Thesis. Of particular importance

is the Newton’s method that was developed and showed very good performance when

initialized using pilots. It is easy to evaluate the gradient and the hessian for the non-

constant modulus case in a similar manner and use it for semiblind data detection.

5.2.3 Improving the Performance of the Semiblind Channel

Centered Receiver

In Chapter 3, a semiblind technique was presented for the channel estimation in OFDM

transmission. Steepest descent algorithm initialized with a noisy estimate of channel

was used. The gradient (of the log likelihood function with respect to the channel)

involved in the steepest descent algorithm was derived. One way to enhance the

performance of the algorithm is to evaluate the hessian of the log likelihood function

with respect to the channel and use Newton’s method [92]. Another way to improve

the algorithm is to devise some techniques (e.g. Genetic algorithm) to find the global

maximum of the likelihood function.
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