King Fahd University of Petroleum and Minerals **Department of Electrical Engineering** EE 207: Signals and Systems (141, 1st Semester 2014)

Text Book: Signals, Systems, and Transforms, 4th Ed. C. L. Phillips, J. M. Parr, and E. A. Riskin, 2008

Course Instructor Dr. Saad Al-Abeedi	Office Tel 59-0075 860- 7833		Email Office Hours 33 alabeedi@kfupm.edu.sa Sun, & Tue: 10:00-10:50 AM and 12:20-1:00 PM
	33/1-	Datas	Chapter/Cestion Titles
	1	31 -4 Sep.	Chapter 1: Introduction 1.1: Introduction to Signals & Systems Examples Chapter 2: Continuous-Time Signals and Systems 2 1: Transformation of Continuous-Time Signals
	2	7-11 Sep.	2.2: Signal Characteristics 2.3: Common Signals in Engineering 2.4: Singularity Functions
	3	14-18 Sep.	2.5: Mathematical Functions for Signals2.6: Continuous-Time Systems2.7: Properties of Continuous-Time Systems
	4	21-25 Sep. (Tues. 23 Nat. Da 25 Sep. Start of H Holiday	y) ajj Chapter 3: Continuous-Time Linear Time-Invariant Systems 3.1: Impulse Representation of Continuous-Time Signals 3.2: Convolution for Continuous-Time LTI Systems
			Hajj Holiday
	5	12- 16 Oct.	3.5: Properties of Convolution 3.4: Properties of Continuous-Time LTI Systems Chapter 4: Fourier Series 4.1: Function Approximation
	6	19-23 Oct.	4.2: Fourier Series 4.3: Fourier Series and Frequency Spectra
	7	26-30 Oct.	 4.5: System Analysis 4.6: Fourier Series Transformations Chapter 5: Fourier Transform 5.1: Definition of the Fourier Transform
		Tuesday 28 Oct	Major Exam I (up to the End of Chapter 4) – 7-9PM
	8	2-6 Nov.	5.2: Properties of the Fourier Transform5.3: Fourier Transform of common Functions
	9	9-13 Nov.	5.5: Applications of the Fourier Transform 5.6: Energy and Power Density Spectra Chapter 6: Applications of the Fourier Transform 6.1: Ideal filters
	10	16-20 Nov.	 6.3: Concept of Bandwidth Chapter 7: The Laplace Transform 7.1: Definition of Laplace Transforms 7.2: Examples of Laplace transform
	11	23-27 Nov.	7.3: Laplace Transforms of Functions7.4: Laplace Transform Properties7.6: Response of LTI Systems
		Sunday 30 Nov.	Major Exam II (covered material Ch5 up to the end of 7.6) – 7-9PM
	12	30-4 Dec.	7.7: LTI Systems Characteristics Signal Sampling and Reconstruction 5.4: Sampling of Continuous-Time Signals
	13	7-11 Dec.	6.4: Reconstruction of Signals from Sampled Data Chapter 10: Discrete-Time Linear Time-Invariant Systems 10.1: Impulse Representation of Discrete-Time signals 10.2: Convolution for Discrete-Time Systems
	14	14-18 Dec.	10.3: Properties of Discrete-Time LTI Systems 10.4: Difference-Equation Models (up to equation 10.48) Chapter 11: The z-Transform 11.1: Definition of z-Transform 11.2: Examples
	15	21-25 Dec.	11.3: z-Transforms of common Functions 11.4: z-Transform Properties 11.6: inverse z transform by long division and partial fraction expansion
	16	28-29 Dec.	Review

Grading Policy:

Class Work (Quizzes 15 %)		Project: 5%
Exam I : 20%	Exam II: 20%	Final Exam: 40%

Notes:

- The course is fully coordinated. 1.
- Homework assignments will not be collected. Instead, a quiz related to the homework problems is expected every Tuesday on 2. the next week after the homework assignment week. Homework solution will be posted on Blackboard.
- 3. Attendance: Any student who misses more than 8 classes will receive a grade of DN in the course.

4. There will be absolutely no make-ups for quizzes or exams.

5. Students caught cheating in quizzes, design project, or exams will be given a grade of F in the course and their case will be reported to higher authorities for possible dismissal from KFUPM.