King Fahd University of Petroleum and Minerals

Electrical Engineering Department

EE200: Digital Logic Circuit Design Fall Semester 2014 (141)

A. Course Information

Text Book:	Digital Design (5th Edition) by M. M. Mano					
Educators	Details		Office	Phone		
Instructor	Name: Dr. Saad Al-Abeedi Email: alabeedi@kfupm.edu.sa Office Hours: Sun & Tue: 10:00-10:50AM and 12:20-1:00PM		59-0075	7833		
Course Coordinator	Name: Dr. Hassan Ragheb Email: hragheb@kfupm.edu.sa		59-2084	2792		
Lab Coordinator:	Name: Mr.Ali Al-Beladi Email: <u>albleladi@kfupm.edu.sa</u>		59-0016			
Grading:	Assignments, attendance, Quizzes	Laboratory	Major 1	Major 2	Final	
Grauing.	20%	20%	15%	15%	30%	
Exams	1 st Major	2 nd Major	Final			
Exams Dates:	First Major	Second Major	Per the schedule			
Exams Times:	Tue. October 21, 2014 7 – 9 PM	Tue. Nov. 25, 2014 7 – 9 PM	from the registrar's office			
Exams Places:	To be announced	To be announced				
Important Dates:	Last day to drop the course without a permanent record	Last day to drop the course with "W" grade	Last day to drop all courses with "WP/WF" Thru Registrar's office.			
	Thu. Sept. 11, 2014	Thu. October 23, 2014	Thu. Dec. 18, 2014			

- Note #1: All exams (1st Major, 2nd Major and Final Exam) are <u>coordinated</u> (i.e. it is common for all sections). The Final Exam is <u>comprehensive</u> (covers chapters 1-7 as described in the syllabus and class notes). Lab Final will be given by the Lab instructor in the Lab during a normal Lab session.
- Note #2: According to the rules and regulations of KFUPM, attendance is MANDATORY. More than 8 unexcused absences will be reported to the registrar office and result in a GRADE of DN regardless of the student's performance.
- Note #3: It is your responsibility to solve the *practice problems* as soon as the material is covered in the class. Solution will be posted on <u>Blackboard</u> (https://blackboard.kfupm.edu.sa). The *practice problems* set will not be collected.
- **Note #4:** Your instructor will give you other home work assignments which will be collected and graded. Quizzes will be given regularly based on the homework and the *practice problems*...
- Note #5: Class notes, announcements and HW solutions will be posted on the class webpage on Blackboard (or WebCT)

 It is your responsibility to check announcements regularly.

B. Course Details.

1. Course (Catalog) Description

Number systems & codes. Logic gates. Boolean Algebra. Karnaugh maps. Analysis and synthesis of combinational systems, decoders, multiplexers, adders and subtractors, PLA's. Types of flip-flops. Memory concept. Registers. Introduction to sequential circuit design.

2. Prerequisites(s)

Calculus I (MATH 101) General Physics I (PHYS 101)

3. Course objectives are to

- Introduce the students to the digital principles with emphasis on logic design.
- Familiarize the students with the necessary mathematical tools such as number systems, codes, and Boolean algebra.
- Learn the principles of analysis and design of combinational logic circuits
- Learn the principles of analysis and design of sequential logic circuits.

4. Learning Outcomes

After successfully completing the course, the students will be able to

Outcome 1: apply knowledge of number systems, codes and Boolean algebra to the analysis and design of digital

logic circuits.

Outcome 2: identify, formulate, and solve engineering problems in the area of digital logic circuit design.

Outcome 3: use the techniques, skills, and modern engineering tools such as logic works, necessary for

engineering practice.

Outcome 4: to function on multi-disciplinary teams through digital circuit experiments and projects.

Outcome 5: to design a digital system, components or process to meet desired needs within realistic constraints.

5. Topics Covered

- Binary Numbers, Number Base Conversions,
- Complements, Signed Binary Numbers, Binary Codes,
- Binary Logic, Boolean Algebra and digital logic gates,
- Forms of logic functions and K-map simplification,
- Analysis and design of combinational logic circuits,
- Adders, Multipliers, Magnitude Comparator, Decoders, Multiplexers,
- Programmable logic devices,
- Flip-flops and sequential circuits,
- Registers and counters.

6. References.

- Logic and Computer Design Fundamentals, M. Morris Mano and C. R. Kime, 5th Edition, Prentice Hall, 2008.
- Fundamentals of Digital Logic with Verilog Design, S. Brown and Z. Vranesic, 2nd Edition, McGraw Hill, 2008.

C. Tentative Course Outline and Schedule

Terrette	Chauve Course Outline and Schedule						
Week	Date	Topics	Sections	Labs/Prob. Sessions			
1	Aug. 31- Sept. 4	Digital Systems, Binary Numbers, Number Base Conversions, Octal & Hexadecimal Numbers	1.1-1.4	No Lab			
2	Sept. 7-11	Complements, Signed Binary Numbers, Binary Codes, Binary Logic	1.5-1.7 1.9	No Lab			
3	Sept. 14- 18	Boolean Algebra: Axioms, Theorems & Properties. Boolean functions, Digital Logic Gates	2.1-2.4 2.7-2.8	Exp#1: Getting Started with the Laboratory Equipment			
4	Sept. 21- 25	Canonical & Standard Forms Simplification of Boolean functions Using K-Maps, Product of Sums Simplification.	2.5-2.6 3.1-3.5	No Lab.			
EID AL-ADHA VACTION							
5	Oct. 12-16	Don't-care Conditions, NAND, NOR, and Other Two Level Implementations, Exclusive-OR Function. Introduction to HDL	3.6-3.9	Exp#2: Building logic functions using traditional ICs			
6	Oct. 19-23	Combinational Logic: Analysis and Design Procedures, Code Conversion, Adder circuits.		Exp#3: Introduction to Verilog HDL			
7	Oct. 26-30	Subtractors, Decimal Adder, binary multiplier, Magnitude Comparator, Decoders.	4.5-4.8	Exp#3a: programming with Verilog HDL (part I)			
8	Nov. 2-6	Encoders and Multiplexers Sequential Circuits, Latches,	4.9-4.11 5.1-5.3	Exp#3b: programming with Verilog HDL (part I)			
9	Nov. 9-13	Flip-flops, Analysis of Clocked Sequential Circuits.	5.4-5.5,	Exp#4: Combinational Logic Circuits (Part I)			
10	Nov. 16- 20	State Reduction and Assignment, Flip-flop Excitation Tables, Design Procedure, Synthesis using different flip flops	5.7-5.8	Exp#5: Combinational Logic Circuits (Part II)			
11	Nov. 23- 27	Registers and Shift Registers	6.1, 6.2	Exp#6: Combinational Logic Circuits (Part III)			
12	Nov. 30- Dec. 4	Ripple Counters, Synchronous Counters and other counters.	6.3-6.5	Exp#7: Sequential Logic Circuits (Part I)			
13	Dec. 7-11	Random Access Memory	7.2-7.3	Exp#8: Sequential Logic Circuits (Part II)			
14	Dec. 14-18	Programmable Logic, PLD'S, ROM, Programmable Logic Array, Programmable Array Logic.	7.5-7.7	Exp#9: Final Lab Project			
15	Dec. 21-25	Revision		Lab Final			
	Dec. 28	Revision					

D. Practice Problems

Chapter 1:	5, 7, 9, 18, 20, 29, 35
Chapter 2:	2, 8, 12, 15, 18, 20
Chapter 3:	2, 7, 12, 15, 19, 24
Chapter 4:	5, 11, 13, 20, 25, 29, 31, 35
Chapter 7:	15, 18, 19, 21, 25
Chapter 5:	2, 6, 9, 12, 19
Chapter 6:	5, 7, 8, 12, 21