
Study of Kalman Filter 

________________________________________________________________________ 
Report:  Kamran Arshad, May 2002 1

 
 

KING FAHD UNIVERSITY OF 
PETROLEUM & MINERALS 

 
  

 
 

STUDY OF KALMAN FILTER 
 

TERM  # 012 

COURSE # EE 550 

TERM PROJECT REPORT 

DATE OF SUBMISSION: 25-MAY-2002 

 

 

SUBMITTED TO 

DR. SAMIR A. AL-BAIYAT 

 
 
 

SUBMITTED BY 

KAMRAN ARSHAD 

STUDENT ID # 210261 

 
 



Study of Kalman Filter 

________________________________________________________________________ 
Report:  Kamran Arshad, May 2002 2

TABLE OF CONTENTS 

TABLE OF CONTENTS 2 

ABSTRACT 4 

INTRODUCTION 5 

1.1  ADAPTIVE FILTERS 5 
1.2  KALMAN FILTER APPROACHES 6 
1.3  BASIC OUTLINE OF THE REPORT 6 

PROBABILITY & RANDOM VARIABLE 8 

2.1  PROBABILITY 8 
2.2  RANDOM VARIABLES 9 
2.3  MEAN AND VARIANCE 10 
2.4  NORMAL OR GAUSSIAN DISTRIBUTION 11 
3.5  CONTINUOUS INDEPENDENCE AND CONDITIONAL  PROBABILITY 12 
2.6  SPATIAL VS. SPECTRAL SIGNAL CHARACTERISTICS 13 

DISCRETE KALMAN FILTER 14 

3.1  THE PROCESS TO BE ESTIMATED 14 
3.2  THE COMPUTATIONAL ORIGINS OF THE FILTER 15 
3.3  THE PROBABILISTIC ORIGINS OF THE FILTER 17 
3.4  THE DISCRETE KALMAN FILTER ALGORITHM 17 
3.5  FILTER PARAMETERS AND TUNING 19 

EXTENDED KALMAN FILTER 22 

4.1  THE PROCESS TO BE ESTIMATED 22 
4.2  THE COMPUTATIONAL ORIGINS OF THE FILTER 23 
4.3  APPLICATIONS 27 
4.3.1  STATE ESTIMATION 28 
4.3.2  PARAMETER ESTIMATION 28 
4.3.3  DUAL ESTIMATION 29 
4.4  BASIC FLAW IN EKF 30 

SIMULATIONS 32 



Study of Kalman Filter 

________________________________________________________________________ 
Report:  Kamran Arshad, May 2002 3

5.1  TRACKING THE CAR ALONG A ARC  OF FIXED RADIUS 32 
5.2  SOURCE CODE 34 
5.3  SIMULATION RESULTS 38 
5.2  CONCLUSION 40 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 
 
 
 

 
 
 
 



Study of Kalman Filter 

________________________________________________________________________ 
Report:  Kamran Arshad, May 2002 4

ABSTRACT 
 

The Kalman filter is a mathematical power tool that is playing an increasingly important 

role in a number of applications like computer graphics, parametric estimation etc. The 

good thing with that one don’t have to be a mathematical genius to understand and 

effectively use Kalman filters. While the Kalman filter has been around for about 30 

years, it have recently started popping up in  a wide variety of  applications. The Kalman 

Filter is the best possible estimator for a large class of problems and a very effective and 

useful estimator for an even large class. Kalman filtering addresses an age-old question: 

How do you get accurate information out of inaccurate data? More pressingly, how do 

you update a "best" estimate for the state of a system as new, but still inaccurate, data 

pour in? Much as a coffee filter serves to keep undesirable grounds out of your morning 

mug, the Kalman filter is designed to strip unwanted noise out of a stream of data. 

The applications of Kalman Filters are endless. Kalman filtering has proved useful in 

navigational and guidance systems, radar tracking, sonar ranging, and satellite orbit 

determination, to name just a few areas. Kalman and Bucy's original papers have 

generated thousands of other papers on aspects and applications of filtering. Their work 

has also stimulated mathematical research in such areas as numerical methods for linear 

algebra. 

The Extended Kalman Filter (EKF) has become a standard technique used in a number of 

nonlinear estimation and machine learning applications. These include estimating the 

state of a nonlinear dynamic system, estimating parameters for nonlinear system 

identification (e.g., learning the weights of a neural network), and dual estimation ( e.g., 

the Expectation Maximization (EM) algorithm) where both states and parameters are 

estimated simultaneously.  

In this term project, I will provide a complete survey of Kalman Filter, its mathematical 

equations, and for better understanding I also apply Kalman filter to a nonlinear state 

estimation problem, in which we have to track a car moving on a circular track of fixed 

radius. Speed of the car is disturbed by the additive white gaussian noise, and we have to 

estimate its speed in the presence of gaussian noise, by using Extended Kalman Filter. 
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Chapter 1 
 

Introduction 
 
The term filter is often used to describe a device in the form of either hardware or 

computer software that is applied to a set of noisy data in order to extract information 

about a prescribed quantity of interest. The noise may arise from a variety of sources. For 

example, the data may have been derived by means of noisy sensors or may represent a 

useful signal component that has been corrupted by transmission through a 

communication channel. In any event, we may use the filter to perform basic operations 

like, filtering, smoothing and prediction. Here in this term project, we are basically more 

concerned with the application of filters for estimation problems.  

A useful approach to filter-optimization problem is to minimize square value of the error 

signal that is defined as the different between some desired response and the actual filter 

output. For stationary inputs, the result is commonly known as Wiener Filter, which is 

also an optimum filter in mean square sense. The Wiener filter is inadequate for dealing 

with situations in which nonstationarity of the signal or noise is intrinsic to the problem. 

In such situations, the optimum filter has to be assume a time varying form. A highly 

successful solution to this more difficult problem is found in Kalman Filter.  

 

1.1  Adaptive Filters 
The design of a Wiener filter requires a priori information about the statistics of the data 

to be processed. The filter is optimum only when the statistical characteristics of  the 

input data  match the a priori information on which the design of the filter is based. When 

this information is not known completely, however, it may not be possible to design the 

Wiener filter or else the design may no longer be optimum. A very straight forward 

approach that is used in these situations is the “estimate” and plug procedure. This is a 

two stage process whereby the filter first “estimates” the statistical parameters of the 

relevant signals and than plug the results so obtained, into a nonrecursive formula for  

computing the filter parameters. For real time systems, this procedure has the 
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disadvantage of requiring excessively elaborate and costly hardware. A more efficient 

method is to use an adaptive filter. By such a device, we mean one that is self-designing 

in that the adaptive filter relies for its operation on a recursive algorithm, which makes it 

possible for the filter to perform satisfactorily in an environment where complete 

statistics of the relevant signal is not available. In a nonstationary environment, the 

algorithm offers a tracking capability, whereby it can  track time variations in the 

statistics of the input data, provided that the variations are sufficiently slow. 

 

1.2  Kalman Filter Approaches 
There is no unique solution to the adaptive filtering problem. Rather, we have a kit of 

tools, represented by a variety of recursive algorithms, each of which offers desirable 

features of its own. The challenge facing the user of adaptive filtering is, first, to 

understand the capabilities and limitations of various adaptive filtering algorithms, and 

second to use this understanding in the selection of the appropriate algorithms for the 

application at hand. 

Kalman filtering problem for a linear dynamic system is formulated in terms of two basic 

equations: the process equation that describe the dynamics of the system in terms of the 

state vector, and the measurement equation that describe measurement errors induced in 

the system. The solution to the problem is expressed as a set of time update recursions 

that are expressed in matrix form. To apply these recursions to solve the adaptive filtering 

problem, however, the theory requires that we postulate a model of the optimum 

operating conditions, which serve as a frame of reference for Kalman filter to track. 

 

1.3  Basic Outline of the Report 
This report basically provide a complete survey of Kalman Filter, its importance, its 

mathematical equations, and than a simple simulation for better understanding of the 

filter. One of the basic application of Kalman filters is state estimation, so I used Kalman 

filter for the estimation of a nonlinear state.   

In chapter 2, I provides an introduction of probability theory and random variables, and I 

mainly focused on the behavior of random variables, and stochastic processes, because 
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the basics of Kalman filters lies in the theory of stochastic processes. Some of the 

fundamental definitions like probability, mean, variance etc. are discussed, and than I  

presents an brief overview of different distributions. Most commonly used distribution is 

the Gaussian distribution, which is very popular in modeling random systems for a 

variety of reasons, that’s why my emphasis will mainly on random distributions  

In chapter 3, a brief introduction of Kalman filter will be presented.  One of the most 

fundamental application of Kalman filters is the process or state estimation. So here in 

this chapter, I will cover some of the fundamentals of process estimation, computational 

origin of the Kalman filter, how we can develop the equations of Kalman filters, what is 

the probabilistic origin of the filter. And than I switch to discrete Kalman filter algorithm, 

and the basic time and measurement update equations of the Discrete Kalman filter. 

In chapter 4, I review the extended Kalman filter, which is used for the estimation of 

nonlinear states, which is the most likely case in most of the situations. Even here in this 

term project, I apply extended Kalman filter, because the process which I wants to be 

estimated is a nonlinear process. So here I modify the equations which I already derived 

in the previous section, for extended Kalman filters. 

In chapter 5, I will briefly describe the simulation  and my matlab code, which I wrote for 

the estimation of nonlinear state via extended Kalman filters. So here I briefly discuss the 

problem formulation, than how I apply Extended Kalman filter, and than what are the 

results, how Kalman filter track the actual state, these are the main topics of this chapter. 

I also describe my code, give the program listing, and show the results. 
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Chapter 2 
 

Probability & Random Variable 
 

What follows is a very basic introduction to probability and random variables. For more 

extensive coverage, see any book on the topic of probability theory and stochastic 

processes. 

 

2.1  Probability 
Most of us have some notion of what is meant by a “random” occurrence, or the 

probability that some event in a sample space will occur. Formally, the probability that 

the outcome of a discrete event (e.g. a coin flip) will favor a particular event is defined 

as: 

p(A) = Possible outcomes favoring event A 

Total number of possible outcomes 

The probability of an outcome favoring either A or B is given by: 

)()()( BpApBAp +=∪  

If the probability of two outcomes is independent (one does not affect the other) than the, 

than the probability of both occurring is the product of their individual probabilities: 

)().()( BpApBAp =∩  

Finally, the probability of outcome A given an occurrence of outcome B is called the 

conditional probability of A given B, and is defined as 

)(
)()/(

Bp
BApBAp ∩

=  
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2.2  Random Variables 
As opposed to discrete events, in the motion of tracking and motion capture, we are more 

typically interested with the randomness associated with a continuous electrical voltage 

or perhaps a user’s motion. In each case we can think of the item of interest as a 

continuous random variable. A random variable is essentially a function that maps all 

points in the sample space to real numbers. For example, the continuous random variable 

)(tX  might maps all points in the sample space to real numbers. For example, the 

continuous random variable )(tX might map time to position. At any point in time, 

)(tX would tell us the expected position. 

In the case of continuous random variables, the probability of any single discrete event A 

is in fact 0. That is, 0)( =Ap . Instead we can only evaluate the probability of events 

within some interval. A common function representing the probability of random 

variables is defined as cumulative distribution function. 

],()( xpxFX −∞=  

This function has some important properties defined as: 

0)( →xFX as −∞→x  

1)( →xFX as +∞→x  

)(xFX is a non decreasing function of x  

Even more commonly used equation is its derivative, which is called probability density 

function. 

)()( xF
dx
dxf XX =  

Like cumulative distribution function, the probability density function also have 

following properties: 

)(xf X  is a non-negative function 

∫
+∞

∞−

= 1)( dxxf X  

Finally, note that the probability over any interval ],[ ba  is defined as 
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∫=
b

a
XX dxxfbap )(],[  

 

2.3  Mean and Variance 
Most of us familiar with the notion of the average of a sequence of numbers. For some N 

samples of a discrete random variable X, the average or sample mean is given by 

N
XXX

X N+++
=

...21  

Because in tracking we are dealing with continuous signals (with an uncountable sample 

space) it is useful to think in terms of an infinite number of trials, and correspondingly 

the outcome we would expect to see if we sampled the random variable infinitely, each 

time seeing one of n possible outcomes nxx ...1 . In this case, the expected value of the 

discrete random variable could be approximated by averaging probability-weighted 

events: 

N
xNpxNpxNp

X Nn )(...)()( 2211 +++
=  

In effect, out of N trials, we would expect to see )( 1Np occurrences of event 1x  etc. This 

notion of infinite trials (samples) leads to the conventional definition of expected value 

for discrete random variables 

Expected value of ∑
=

==
n

i
ii xpxEX

1
)(  

For n possible outcomes, and there corresponding probabilities. Similarly, for the 

continuous random variable the expected value id defined as 

Expected value of ∫
+∞

∞−

== dxxxfXEX X )()(  

Finally, we note that above equations for expected values can be applied for the functions 

of the random variable X as follows: 

∑
=

=
n

i
ii xgpxgE

1
)())((  

and for continuous, 
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∫
+∞

∞−

= dxxfxgxgE X )()())((  

The expected value of a random variable is also called first statistical moment. Similarly 

the thk  moment of a continuous random variable is given by: 

∫
+∞

∞−

= dxxfxXE X
kk )()(  

But normally we are interested in the second moment, which is given by: 

∫
+∞

∞−

= dxxfxXE X )()( 22  

When we let )()( XEXXg −=  and apply the equation of second moment, so we can get 

the variance about the mean. In other words, 

Variance ]))([( 2XEXEX −=  

             22 )()( XEXEX −=  

Variance is a very useful statistical property for random signals, because if we knew the 

variance of a signal that was otherwise supposed to be “constant” around some value -  

the mean, the magnitude of the variance would give us a sense how much jitter or “noise” 

is in the signal. 

The square root of the variance, known as the standard deviation, it is also a useful 

statistical unit of measure because while being always positive, it has (as opposed to the 

variance) the same units as the original signal. The standard deviation is given by 

Standard deviation of =σ= XX Variance of X 

 

2.4  Normal or Gaussian Distribution 
A special probability distribution known as Normal or Gaussian distribution has 

historically been popular in modeling random systems for a variety of reasons. As it turns 

out, many random processes occurring in nature actually appear to be normally 

distributed, or very close. In fact, under some particular conditions, it can be proved that 

a sum of random variables with any distribution tends toward a normal distribution, a 

very famous statement of Central Limit Theorem. 
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Given a random process ),(~ 2σµNX , i.e. a continuous random process X that is 

normally distributed with mean µ and variance 2σ . The probability density function for 

X is given by: 

2

2

2
)(

2
1)( σ

µ

σπ

−−

=
x

X exf  

for ∞−  to ∞+ . Any linear function of a normally distributed random process (variable) 

is also a normally distributed random process. Any linear function of a normally 

distributed random process is also a normally distributed random process. Graphically, 

the normal distribution is what is likely to be familiar as the “bell-shaped” curve shown 

below in figure: 

 
Figure2.1:   The Normal or Gaussian probability distribution function 

 

3.5  Continuous Independence and Conditional  Probability 
Two continuous random variables X and Y are said to be statistically independent, if their 

joint probability ),( yxf XY is equal to the product of their individual probabilities. In other 

words, they are considered independent if 

)()(),( yfxfyxf YXXY =  

Bayes’ Rule 

In addition, Bayes rule offering a way to specify the probability density of the random 

variable X given (in the presence of) random variable Y. Bayes rule is given as 
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)(
)()(

)( /
/ yf

xfyf
xf

Y

XXY
YX =  

Continuous-Discrete 

Given a discrete process X and a continuous process Y, the discrete probability mass 

function for X conditioned on Y = y is given by 

∑ =
=

==

z
XY

XY
X zpzXyf

xpxXyfyYxp
)()/(

)()/()/(  

Note that this formula provides a discrete probability based on the conditioning density, 

without any integration. 

 

2.6  Spatial vs. Spectral Signal Characteristics 
In the previous sections we looked only at the spatial characteristics of random signals. 

As stated earlier, the magnitude of the variance of a signal can give us a sense of how 

much jitter or “noise” in the signal. However, a signals variance says nothing about the 

spacing or the rate of jitter over time. Here, we briefly discuss the temporal and hence 

spectral characteristics of a random signal.  

A useful time-related characteristics of a random signal is autocorrelation, its correlation 

with itself over time. Formally, the autocorrelation of a random signal )(tX  is defined as: 

)]()([),( 2121 tXtXEttRX =  

for sample times 1t  and 2t . If the process is stationary, than the autocorrelation depends 

only on the difference 21 tt −=τ . In this special case, the autocorrelation can be re-

written as 

)]()([)( τ+=τ tXtXERX  

Clearly the autocorrelation is a function of time, which means that it has a spectral 

interpretation in the frequency domain also. Again for stationary process, there is an 

important temporal-spectral relationship known as Wiener-Khinchine relation: 

)]([)( τ= XX RFjwS  
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Chapter 3 
 

Discrete Kalman Filter 
 
In 1960, R.E. Kalman published his famous paper describing a recursive solution to the 

discrete-data linear filtering problem [Kalman60]. Since that time, due in large part to 

advances in digital computing, the Kalman filter has been the subject of extensive 

research and application, particularly in the area of autonomous or assisted navigation. A 

very "friendly" introduction to the general idea of the Kalman filter can be found in 

Chapter 1 of [Maybeck79], while a more complete introductory discussion can be found 

in [Sorenson70], which also contains some interesting historical narrative. More 

extensive references include [Gelb74; Grewal93; Maybeck79; Lewis86; Brown92; 

Jacobs93]. 

 

3.1  The Process to be Estimated 

The Kalman filter addresses the general problem of trying to estimate the state of a 

discrete-time controlled process that is governed by the linear stochastic difference 

equation 

, (3.1) 

with a measurement that is 

. (3.2) 

The random variables  and  represent the process and measurement noise 

(respectively). They are assumed to be independent (of each other), white, and with 

normal probability distributions 

, (3.3) 

. (3.4) 
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In practice, the process noise covariance and measurement noise covariance  matrices 

might change with each time step or measurement, however here we assume they are 

constant. 

The  matrix  in the difference equation (3.1) relates the state at the previous time 

step  to the state at the current step , in the absence of either a driving function or 

process noise. Note that in practice  might change with each time step, but here we 

assume it is constant. The  matrix B relates the optional control input to the 

state x. The  matrix  in the measurement equation (3.2) relates the state to the 

measurement Zk. In practice  might change with each time step or measurement, but 

here we assume it is constant. 

 

3.2  The Computational Origins of the Filter 

We define (note the "super minus") to be our a priori state estimate at step k given 

knowledge of the process prior to step k, and to be our a posteriori state estimate at 

step k given measurement . We can then define a priori and a posteriori estimate errors 

as 

 
The a priori estimate error covariance is then 

, (3.5) 

and the a posteriori estimate error covariance is 

. (3.6) 

In deriving the equations for the Kalman filter, we begin with the goal of finding an 

equation that computes an a posteriori state estimate  as a linear combination of an a 

priori estimate  and a weighted difference between an actual measurement  and a 

measurement prediction  as shown below in (3.7).  

(3.7) 
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The difference in (3.7)  is called the measurement innovation, or the residual. 

The residual reflects the discrepancy between the predicted measurement and the 

actual measurement . A residual of zero means that the two are in complete agreement.  

The  matrix K in (3.7) is chosen to be the gain or blending factor that minimizes the 

a posteriori error covariance (3.6). This minimization can be accomplished by first 

substituting (3.7) into the above definition for , substituting that into (3.6), performing 

the indicated expectations, taking the derivative of the trace of the result with respect to 

K, setting that result equal to zero, and then solving for K. For more details see 

[Maybeck79; Brown92; Jacobs93]. One form of the resulting K that minimizes (3.6) is 

given by 

. (3.8) 

Looking at (3.8) we see that as the measurement error covariance  approaches zero, the 

gain K weights the residual more heavily. Specifically, 

 

On the other hand, as the a priori estimate error covariance  approaches zero, the gain 

K weights the residual less heavily. Specifically, 

 
Another way of thinking about the weighting by K is that as the measurement error 

covariance  approaches zero, the actual measurement  is "trusted" more and more, 

while the predicted measurement  is trusted less and less. On the other hand, as the a 

priori estimate error covariance  approaches zero the actual measurement  is trusted 

less and less, while the predicted measurement  is trusted more and more. 
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3.3  The Probabilistic Origins of the Filter 

The justification for (3.7) is rooted in the probability of the a priori estimate 

conditioned on all prior measurements (Bayes' rule). For now let it suffice to point out 

that the Kalman filter maintains the first two moments of the state distribution, 

 
The a posteriori state estimate (3.7) reflects the mean (the first moment) of the state 

distribution-- it is normally distributed if the conditions of (3.3) and (3.4) are met. The a 

posteriori estimate error covariance (3.6) reflects the variance of the state distribution (the 

second non-central moment). In other words, 

. 

For more details on the probabilistic origins of the Kalman filter, see [Maybeck79; 

Brown92; Jacobs93]. 

 

3.4  The Discrete Kalman Filter Algorithm 
We will begin this section with a broad overview, covering the "high-level" operation of 

one form of the discrete Kalman filter (see the previous footnote). After presenting this 

high-level view, we will narrow the focus to the specific equations and their use in this 

version of the filter. 

The Kalman filter estimates a process by using a form of feedback control: the filter 

estimates the process state at some time and then obtains feedback in the form of (noisy) 

measurements. As such, the equations for the Kalman filter fall into two groups: time 

update equations and measurement update equations. The time update equations are 

responsible for projecting forward (in time) the current state and error covariance 

estimates to obtain the a priori estimates for the next time step. The measurement update 

equations are responsible for the feedback--i.e. for incorporating a new measurement into 

the a priori estimate to obtain an improved a posteriori estimate. 
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The time update equations can also be thought of as predictor equations, while the 

measurement update equations can be thought of as corrector equations. Indeed the final 

estimation algorithm resembles that of a predictor-corrector algorithm for solving 

numerical problems as shown below in Figure 3-1. 

 

 

                                                        Time                     

                                                       Update                  Measurement 

                                                     (Predict)                 Update (correct) 

 

 

 

 

Figure 3-1. The ongoing discrete Kalman filter cycle. The time update projects the               

current state estimate ahead in time. The measurement update adjusts the projected 

estimate by an actual measurement at that time. 

 

The specific equations for the time and measurement updates are presented below in 

Table 3-1 and Table 3-2. 

 

Table 3-1: Discrete Kalman filter time update equations. 

(3.9) 

(3.10) 

 

Again notice how the time update equations in Table 3-1 project the state and covariance 

estimates forward from time step  to step . A and B are from (3.1), while  is from 

(3.3). Initial conditions for the filter are discussed in the earlier references. 
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Table 3-2: Discrete Kalman filter measurement update equations. 

(3.11) 

(3.12) 

(3.13) 

 

The first task during the measurement update is to compute the Kalman gain, . Notice 

that the equation given here as (3.11) is the same as (3.8). The next step is to actually 

measure the process to obtain , and then to generate an a posteriori state estimate by 

incorporating the measurement as in (3.12). Again (3.12) is simply (3.7) repeated here for 

completeness. The final step is to obtain an a posteriori error covariance estimate via 

(3.13). 

After each time and measurement update pair, the process is repeated with the previous a 

posteriori estimates used to project or predict the new a priori estimates. This recursive 

nature is one of the very appealing features of the Kalman filter--it makes practical 

implementations much more feasible than (for example) an implementation of a Wiener 

filter [Brown92] which is designed to operate on all of the data directly for each estimate. 

The Kalman filter instead recursively conditions the current estimate on all of the past 

measurements.Figure 3-2 below offers a complete picture of the operation of the filter, 

combining the high-level diagram of Figure 3-1 with the equations from Table 3-1 and 

Table 3-2. 

 

3.5  Filter Parameters and Tuning 

In the actual implementation of the filter, the measurement noise covariance  is usually 

measured prior to operation of the filter. Measuring the measurement error covariance 

is generally practical (possible) because we need to be able to measure the process 

anyway (while operating the filter) so we should generally be able to take some off-line 

sample measurements in order to determine the variance of the measurement noise. 
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The determination of the process noise covariance  is generally more difficult as we 

typically do not have the ability to directly observe the process we are estimating. 

Sometimes a relatively simple (poor) process model can produce acceptable results if one 

"injects" enough uncertainty into the process via the selection of . Certainly in this case 

one would hope that the process measurements are reliable. 

In either case, whether or not we have a rational basis for choosing the parameters, often 

times superior filter performance (statistically speaking) can be obtained by tuning the 

filter parameters  and . The tuning is usually performed off-line, frequently with the 

help of another (distinct) Kalman filter in a process generally referred to as system 

identification. 

 
Figure 3-2. A complete picture of the operation of the Kalman filter, combining the high-

level diagram of Figure 3-1 with the equations from Table 3-1 and Table 3-2 

 

In closing we note that under conditions where  and  are in fact constant, both the 

estimation error covariance  and the Kalman gain will stabilize quickly and then 

remain constant (see the filter update equations in Figure 3-2). If this is the case, these 

parameters can be pre-computed by either running the filter off-line, or for example by 

determining the steady-state value of   as described in [Grewal93]. 

It is frequently the case however that the measurement error (in particular) does not 

remain constant. For example, when sighting beacons in our optoelectronic tracker 
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ceiling panels, the noise in measurements of nearby beacons will be smaller than that in 

far-away beacons. Also, the process noise  is sometimes changed dynamically during 

filter operation becoming  in order to adjust to different dynamics. For example, in the 

case of tracking the head of a user of a 3D virtual environment we might reduce the 

magnitude of  if the user seems to be moving slowly, and increase the magnitude if the 

dynamics start changing rapidly. In such cases  might be chosen to account for both 

uncertainty about the user's intentions and uncertainty in the model. 
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Chapter 4 
 

Extended Kalman Filter 
 

4.1  The Process to be Estimated 
As described in previous chapter, the Kalman filter addresses the general problem of 

trying to estimate the state of a discrete-time controlled process that is governed by 

a linear stochastic difference equation. But what happens if the process to be estimated 

and (or) the measurement relationship to the process is non-linear? Some of the most 

interesting and successful applications of Kalman filtering have been such situations. A 

Kalman filter that linearizes about the current mean and covariance is referred to as an 

extended Kalman filter or EKF. 

In something akin to a Taylor series, we can linearize the estimation around the current 

estimate using the partial derivatives of the process and measurement functions to 

compute estimates even in the face of non-linear relationships. To do so, we must begin 

by modifying some of the material presented in previous chapter. Let us assume that our 

process again has a state vector , but that the process is now governed by the non-

linear stochastic difference equation 

, (4.1) 

with a measurement that is 

, (4.2) 

where the random variables and again represent the process and measurement noise 

as in (4.3) and (4.4). In this case the non-linear function in the difference equation (4.1) 

relates the state at the previous time step to the state at the current time step . It 

includes as parameters any driving function uk and the zero-mean process noise wk. The 
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non-linear function  in the measurement equation (4.2) relates the state  to the 

measurement . 

In practice of course one does not know the individual values of the noise and at 

each time step. However, one can approximate the state and measurement vector without 

them as 

(4.3) 

and 

, (4.4) 

where  is some a posteriori estimate of the state (from a previous time step k). 

It is important to note that a fundamental flaw of the EKF is that the distributions (or 

densities in the continuous case) of the various random variables are no longer normal 

after undergoing their respective nonlinear transformations. The EKF is simply an ad hoc 

state estimator that only approximates the optimality of Bayes' rule by linearization. 

Some interesting work has been done by Julier et al. in developing a variation to the EKF, 

using methods that preserve the normal distributions throughout the non-linear 

transformations [Julier96]. 

 

4.2  The Computational Origins of the Filter 
To estimate a process with non-linear difference and measurement relationships, we 

begin by writing new governing equations that linearize an estimate about (4.3) and (4.4), 

, (4.5) 

. (4.6) 

where 

and are the actual state and measurement vectors, 

and are the approximate state and measurement vectors from (4.3) and (4.4), 

is an a posteriori estimate of the state at step k, 

the random variables and represent the process and measurement noise as in (4.3) 

and (4.4).  
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A is the Jacobian matrix of partial derivatives of with respect to x, that is 

, 

W is the Jacobian matrix of partial derivatives of with respect to w, 

, 

H is the Jacobian matrix of partial derivatives of with respect to x, 

, 

V is the Jacobian matrix of partial derivatives of with respect to v, 

. 

Note that for simplicity in the notation we do not use the time step subscript with the 

Jacobians , , , and , even though they are in fact different at each time step. 

Now we define a new notation for the prediction error, 

, (4.7) 

and the measurement residual, 

. (4.8) 

Remember that in practice one does not have access to in (4.7), it is the actual state 

vector, i.e. the quantity one is trying to estimate. On the other hand, one does have access 

to in (4.8), it is the actual measurement that one is using to estimate . Using (4.7) and 

(4.8) we can write governing equations for an error process as 

, (4.9) 

, (4.10) 

where  and  represent new independent random variables having zero mean and 

covariance matrices and , with  and as in (4.3) and (4.4) respectively. 

Notice that the equations (4.9) and (4.10) are linear, and that they closely resemble the 

difference and measurement equations (4.1) and (4.2) from the discrete Kalman filter. 
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This motivates us to use the actual measurement residual  in (4.8) and a second 

(hypothetical) Kalman filter to estimate the prediction error  given by (4.9). This 

estimate, call it , could then be used along with (4.7) to obtain the a posteriori state 

estimates for the original non-linear process as 

. (4.11) 

The random variables of (4.9) and (4.10) have approximately the following probability 

distributions (see the previous footnote): 

 

Given these approximations and letting the predicted value of  be zero, the Kalman 

filter equation used to estimate  is 

. (4.12) 

By substituting (4.12) back into (4.11) and making use of (4.8) we see that we do not 

actually need the second (hypothetical) Kalman filter: 

(4.13) 

Equation (4.13) can now be used for the measurement update in the extended Kalman 

filter, with  and  coming from (4.3) and (4.4), and the Kalman gain  coming from 

(4.11) with the appropriate substitution for the measurement error covariance. 

The complete set of EKF equations is shown below in Table 4-1 and Table 4-2. Note that 

we have substituted  for  to remain consistent with the earlier "super minus" a priori 

notation, and that we now attach the subscript  to the Jacobians , , , and , to 

reinforce the notion that they are different at (and therefore must be recomputed at) each 

time step.  
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Table 4-1: EKF time update equations.

(4.14) 

(4.15) 

 

As with the basic discrete Kalman filter, the time update equations in Table 4-1 project 

the state and covariance estimates from the previous time step to the current time 

step . Again in (4.14) comes from (4.3),  and  are the process Jacobians at step k, 

and is the process noise covariance (4.3) at step k. 

 

Table 4-2: EKF measurement update equations.

(4.16) 

(4.17) 

(4.18) 

 

As with the basic discrete Kalman filter, the measurement update equations in Table 4-2 

correct the state and covariance estimates with the measurement . Again  in (4.17) 

comes from (4.4),  and V are the measurement Jacobians at step k, and  is the 

measurement noise covariance (4.4) at step k. (Note we now subscript  allowing it to 

change with each measurement). 

The basic operation of the EKF is the same as the linear discrete Kalman filter as shown 

in Figure 4-1. Figure 4-1 below offers a complete picture of the operation of the EKF, 

combining the high-level diagram of Figure 4-1 with the equations from Table 5-4 and 

Table 4-2. 
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Figure 4-1.  A complete picture of the operation of the extended Kalman filter, 

combining the high-level diagram of Figure 3-1 with the equations from Table 4-1 and 

Table 4-2. 

An important feature of the EKF is that the Jacobian  in the equation for the Kalman 

gain  serves to correctly propagate or "magnify" only the relevant component of the 

measurement information. For example, if there is not a one-to-one mapping between the 

measurement and the state via , the Jacobian  affects the Kalman gain so that it 

only magnifies the portion of the residual that does affect the state. Of course if 

over all measurements there is not a one-to-one mapping between the measurement  

and the state via , then as you might expect the filter will quickly diverge. In this case 

the process is unobservable. 

 

4.3  Applications 
The EKF has been applied extensively to the field of nonlinear estimation. General 

application areas may be divided into state-estimation and machine learning. We further 

divide machine learning into parameter estimation and dual estimation. The framework 

for these areas are briefly reviewed next.  
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4.3.1  State Estimation  

The basic framework for the EKF involves estimation of the state of a discrete-time 

nonlinear dynamic system,  

 

 (1)

 (2)

 

where represent the unobserved state of the system and  is the only observed 

signal. The process noise drives the dynamic system, and the observation noise is 

given by . Note that we are not assuming additivity of the noise sources. The system 

dynamic model and are assumed known.  

In state-estimation, the EKF is the standard method of choice to achieve a recursive 

(approximate) maximum-likelihood estimation of the state .  

 

4.3.2  Parameter Estimation  

The classic machine learning problem involves determining a nonlinear mapping  

 

(3)

 

where is the input, is the output, and the nonlinear map  is parameterized by the 

vector . The nonlinear map, for example, may be a feedforward or recurrent neural 

network (  are the weights), with numerous applications in regression, classification, 

and dynamic modeling. Learning corresponds to estimating the parameters . Typically, 

a training set is provided with sample pairs consisting of known input and desired 

outputs, . The error of the machine is defined as , and the 

goal of learning involves solving for the parameters  in order to minimize the expected 

squared error.  
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While a number of optimization approaches exist (e.g., gradient descent using 

backpropagation), the EKF may be used to estimate the parameters by writing a new 

state-space representation  

 

(4)
 

(5)

 

where the parameters correspond to a stationary process with identity state transition 

matrix, driven by process noise  (the choice of variance determines tracking 

performance). The output corresponds to a nonlinear observation on . The EKF 

can then be applied directly as an efficient ``second-order'' technique for learning the 

parameters. In the linear case, the relationship between the Kalman Filter (KF) and 

Recursive Least Squares (RLS) is given in [2]. The use of the EKF for training neural 

networks has been developed by Singhal and Wu [3] and Puskorious and Feldkamp [4]. 

 

4.3.3  Dual Estimation  

A special case of machine learning arises when the input is unobserved, and requires 

coupling both state-estimation and parameter estimation. For these dual estimation 

problems, we again consider a discrete-time nonlinear dynamic system,  

(6)

(7)

 

where both the system states  and the set of model parameters  for the dynamic 

system must be simultaneously estimated from only the observed noisy signal .  

In the next section we explain the basic assumptions and flaws with the using the EKF. In 

Section 6.1, we introduce the Unscented Kalman Filter (UKF) as a method to amend the 

flaws in the EKF.  
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4.4  Basic Flaw In EKF  
Consider the basic state-space estimation framework as in Equations 1 and 2. Given the 

noisy observation , a recursive estimation for can be expressed in the form (see 

[5]),  

 

(8)

 

This recursion provides the optimal minimum mean-squared error (MMSE) estimate for 

assuming the prior estimate and current observation  are Gaussian Random 

Variables (GRV). We need not assume linearity of the model. The optimal terms in this 

recursion are given by  

 

(9)

(10)

 

 

(11)

 

where the optimal prediction of is written as , and corresponds to the expectation 

of a nonlinear function of the random variables and (similar interpretation for 

the optimal prediction ). The optimal gain term  is expressed as a function of 

posterior covariance matrices (with ). Note these terms also require taking 

expectations of a nonlinear function of the prior state estimates.  

The Kalman filter calculates these quantities exactly in the linear case, and can be viewed 

as an efficient method for analytically propagating a GRV through linear system 

dynamics. For nonlinear models, however, the EKF approximates the optimal terms as:  
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(12)

(13) 

 

(14)

 

where predictions are approximated as simply the function of the prior mean value for 

estimates (no expectation taken) The covariance are determined by linearizing the 

dynamic equations , and then determining the 

posterior covariance matrices analytically for the linear system. In other words, in the 

EKF the state distribution is approximated by a GRV which is then propagated 

analytically through the ``first-order'' linearization of the nonlinear system. The readers 

are referred to [5] for the explicit equations. As such, the EKF can be viewed as 

providing ``first-order'' approximations to the optimal terms. These approximations, 

however, can introduce large errors in the true posterior mean and covariance of the 

transformed (Gaussian) random variable, which may lead to sub-optimal performance 

and sometimes divergence of the filter. It is these ``flaws'' which will be amended in the 

next section using the UKF.  
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Chapter 5 
 

Simulations 
In this term project, I basically try to overview the basic characterstics of kalman filter, 

its mathematical equations, and demonstate how simple is, to use the kalman filter. 

Beacuase the beauty of kalman filter is that, in order to use it, you don’t need to know 

much more about its mathematical complexity, with a very superficial knowledge, one 

can apply Kalman Filter directly to any application easily.  

So, here in order to understand Kalman Filter more clearly I apply Kalman Filter to a 

nonlinear state estimation problem, in which, EKF is used to track a car which is moving 

on a circular arc of fixed radius, which I assumed here 10. The speed of the car is 

disturbed by the white gausian noise along the arc. So by using EKF, I  try to estimate the 

speed of  the car, along the curve. The only observation which the filters have, is the 

bearing angle of car.  

 

5.1  Tracking the Car Along a Arc  of Fixed Radius 
Now, in this program, program first asked about the number of runns, from the user, 

means how many times one wants to repeat the simulation.  You can repeat the tracking 

of filters, as many times as you want, and each time u expect different result, because the 

noise is random in behaviour.  Now here in this program first of all, I initialized certain 

variables by their default values, these variables includes covariance (process and 

measurement), radius, which we can choose any arbitraily value, here I assure radius of 

the circulat track is 10,  speed of the car is assumed to be unity, number of time stpes are 

assumed to be 100 and so on. Now after initialize all the variables,  generate the 

measurement and process noise by using “randn” function of the matlab, which will 

generate normaly distributed random gata. Now for initail observation of states, I have to 

call the function “hfun1” by using matlab function “feval”,  and store the initial states of 

the system. Now estimate the state by applying  EKF, so start a loop, first of all predict 

the mean, than calculate jacobian matix for calculating the covariance, and than predict 

the state of  the system by utilizing the equations already described in chapter # 4. After 
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calculating all the estimated values, than calculating the error, simply by taking the 

difference between the actual value and the predicted value of state. Now than taking its 

square root, and calculating the mean square error of prediction. Ideally this error should 

be zero. Finally I will display all the results as shown below. 
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5.2  Source Code 
clc;      % Clear work space 

close all; % Close all windows 

clear all; % Clear all variables   

 

number_of_runs = input('Number of runs : '); 

    % Number of times program run 

 

mean_RMSE_ekf = zeros(1,number_of_runs); 

    % Mean root mean square error  

             

for j=1:number_of_runs, % Main loop begins 

 

radius = 10; % Set arbitraily fixed value 

speed  = 1;  % Speed is assumed to be unity 

dt     = 1;  % Dummy variable 

 

u = [radius; dt]; % Control inputs 

 

N = 100;      % Number of time steps 

 

x0  = [speed; radius; 0];  % Initial state  

 

P0  = 1*[1 0 0; 

         0 1 0; 

         0 0 1];  % Initial state covariance  

 

L = size(x0,1);  % State dimensions 

 

Q    = (.1*speed)^2; % Process noise variance   

R    = 0.1;       % Measurement noise variance 
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xh  = zeros(L,N+1);  % State estimate buffer 

P   = zeros(L,L,1,N+1);% State covariance buffer 

 

xh(:,1)    = x0;       % initialize buffers 

Px(:,:,1)  = P0; 

 

xh_ekf = xh;           % Create EKF buffers from template 

P_ekf  = Px; 

 

alpha = 1; 

beta  = 2; 

kappa = 0;           % 3 - state dimension 

 

%%------------------------------------------------------------------- 

%%---------------------- GENERATE DATASET --------------------------- 

 

fprintf('\nGenerating data...\n'); 

 

x      = zeros(L,N+1); 

y      = zeros(1,N+1); 

v      = sqrt(Q)*randn(1,N+1);    % Process noise  

n      = sqrt(R)*randn(1,N+1);    % Measurement noise 

 

x(:,1) = x0; % Initial state condition 

 

y(:,1) = feval('hfun1',x(:,1),u,n(:,1),1);  

     % Initial onbservation of state 

 

for k=2:(N+1), 

  x(:,k) = feval('ffun1',x(:,k-1),u,v(:,k),k); 
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  y(:,k) = feval('hfun1',x(:,k),u,n(:,k),k); 

end 

 

 

%%------------------------------------------------------------------- 

%%------------------- ESTIMATE STATE USING EKF ---------------------- 

 

fprintf('\nEstimating trajectory...\n'); 

 

for k=2:(N+1), 

 

  % Generate EKF estimate 

  xPred_ekf = feval('ffun1',xh_ekf(:,k-1),u,0,k);   

       % EKF predicted mean 

  Jx = jacobian_ffun1(xh_ekf(:,k-1),u);  

                 % Jacobian for ffun1 

  PPred_ekf = diag([Q 0 0]) + Jx*P_ekf(:,:,k-1)*Jx';            

       % EKF predicted state covariance 

  yPred = feval('hfun1',xPred_ekf,u,0,k); 

  Jy = jacobian_hfun1(xPred_ekf,u); % Jacobian for hfun1 

  % Calculations 

  S  = R + Jy*PPred_ekf*Jy'; 

  Si = inv(S); 

  K = PPred_ekf*Jy'*Si; 

  xh_ekf(:,k)  = xPred_ekf + K*(y(:,k)-yPred); 

       % Predicted state estimate     

  P_ekf(:,:,k) = PPred_ekf - K*Jy*PPred_ekf; 

      

end 

 

%%------------------------------------------------------------------- 
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%%------------------- CALCULATE ERRORS ------- ---------------------- 

 

error_ekf = (x(:,2:end)-xh_ekf(:,2:end)).^2; 

RMSE_ekf  = (sum(error_ekf).^0.5); 

mean_RMSE_ekf(j) = mean(RMSE_ekf); 

 

 

fprintf('\n\nEKF estimate normalized RMSE : %2.4f\n',mean_RMSE_ekf(j)/radius); 

 

%%------------------------------------------------------------------- 

%%------------------- DISPLAY RESULTS ------------------------------- 

 

figure(1); clf; 

subplot(211); 

p1 = plot(x(2,:),x(3,:),'bo','linewidth',1.5); hold on 

p2 = plot(radius*cos(y),radius*sin(y),'k+'); 

p3 = plot(xh_ekf(2,:),xh_ekf(3,:),'r^'); 

legend([p1 p3],'true state','EKF estimate'); 

title('Circular motion with WGN perturbed speed','fontsize',16); 

axis(2*[-radius radius -radius radius]); 

subplot(212); 

p1=plot(RMSE_ekf,'r'); hold on; 

title('RMS Tracking Error of EKF','fontsize',14); 

xlabel('k'); 

ylabel('RMSE','fontsize',14); 

drawnow 

 

end 

 

fprintf('\n\n'); 

fprintf('---------------------------------------------------------\n'); 
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fprintf('Mean & Variance of normalized RMSE over %d runs\n\n',number_of_runs); 

fprintf('EKF : %2.4f 

(%2.4f)\n',mean(mean_RMSE_ekf/radius),var(mean_RMSE_ekf/radius)); 

fprintf('---------------------------------------------------------\n'); 

 

5.3  Simulation Results 
Now when we run the above program,  only once, and try to estimate the speed of the car 

which is moving on a circular arc of radius 10, we have following results, how the EKF 

track the actual state, as well as I also plot here the mean square error for the reference, 

because it shows clrealy how much the EKF succeded in estimating the state. 
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Similarly, for many runs, the screen will show you the trajectory traced by the EKF  in 

each run. The filter, basically calculate the bearing angle in each case, and than based on 

that angle, they will estimate the current states, by using relations already described 

earlier. 
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So for many runs,  
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Similarlay, we can plot the RMS tracking error, in each case, as we already know, lower 

the tracking error better will be the performance. So, the RMS tracking error is given as, 
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So, its quite clear from the above curves of mean square error, that sometimes the mean 

square error is high and sometimes its settles to a moderate level.  

 

5.2  Conclusion 
Here in this term project, I review the basic concepts of  estimation in the light of Kalman 

Filter. Kalman Filter is basically a set of mathematical equations which are used for the 

estimation of states. For nonlinear state estimation problems, we use extended kalman 

filter, which is a very powerful mathematical tool. After studing the basics of kalman 

filters, I than apply kalman filter on a nonlinear state estimation problem. Form the above 

simulation results, its quite clear that extended kalman filter can be successfully used for 

the nonlinear state estimation problem,  since the process is random, so in each itteration 

we have different mean square error, but in general, the level of mean square error, is 

within permissible limits, so EKF  can be used without any doubt to nonlinea estimation 

problem. Anyone can also extend my work, so there is also a suggestion for those who 

have interest in this area, and wants to extend my work. There is  another modification of 
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EKF so called UKF (Uncented Kalman Filter) whose performance is better than EKF, so 

anybody can extend this work by applying UKF on the same problem, and than compare 

the results of the two filters. 
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